ﻻ يوجد ملخص باللغة العربية
We consider the renormalization of the matrix elements of the bilinear quark operators $bar{psi}psi$, $bar{psi}gamma_mupsi$, and $bar{psi}sigma_{mu u}psi$ at next-to-next-to-next-to-leading order in QCD perturbation theory at the symmetric subtraction point. This allows us to obtain conversion factors between the $overline{rm MS}$ scheme and the regularization invariant symmetric momentum subtraction (RI/SMOM) scheme. The obtained results can be used to reduce the errors in determinations of quark masses from lattice QCD simulations. The results are given in Landau gauge.
We study the renormalization of the matrix elements of the twist-two non-singlet bilinear quark operators, contributing to the $n=2$ and $n=3$ moments of the structure functions, at next-to-next-to-next-to-leading order in QCD perturbation theory at
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction(RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark mas
We construct the two loop Greens functions for a quark bilinear operator inserted at non-zero momentum in a quark 2-point function for the most general off-shell configuration. In particular we consider the quark mass operator, vector and tensor curr
We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme(RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Greens functions with the insertion of quark bil
Renormalization constants (RCs) of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a