ﻻ يوجد ملخص باللغة العربية
It is proved that triangle-free intersection graphs of $n$ L-shapes in the plane have chromatic number $O(loglog n)$. This improves the previous bound of $O(log n)$ (McGuinness, 1996) and matches the known lower bound construction (Pawlik et al., 2013).
The Borodin-Kostochka Conjecture states that for a graph $G$, if $Delta(G) geq 9$ and $omega(G) leq Delta(G)-1$, then $chi(G)leqDelta(G) -1$. We prove the Borodin-Kostochka Conjecture for $(P_5, text{gem})$-free graphs, i.e., graphs with no induced $P_5$ and no induced $K_1vee P_4$.
A grounded L-graph is the intersection graph of a collection of L shapes whose topmost points belong to a common horizontal line. We prove that every grounded L-graph with clique number $omega$ has chromatic number at most $17omega^4$. This improves
This paper is concerned with efficiently coloring sparse graphs in the distributed setting with as few colors as possible. According to the celebrated Four Color Theorem, planar graphs can be colored with at most 4 colors, and the proof gives a (sequ
For all $nge 9$, we show that the only triangle-free graphs on $n$ vertices maximizing the number $5$-cycles are balanced blow-ups of a 5-cycle. This completely resolves a conjecture by ErdH{o}s, and extends results by Grzesik and Hatami, Hladky, Kr{
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the maximum order of reduced triangle-free graphs with a