ﻻ يوجد ملخص باللغة العربية
Let $Omega subset mathbb{R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $K subset Omega$ be a compact, $C^2$ submanifold in $mathbb{R}^N$ without boundary, of dimension $k$ with $0leq k < N-2$. We consider the Schrodinger operator $L_mu = Delta + mu d_K^{-2}$ in $Omega setminus K$, where $d_K(x) = text{dist}(x,K)$. The optimal Hardy constant $H=(N-k-2)/2$ is deeply involved in the study of $-L_mu$. When $mu leq H^2$, we establish sharp, two-sided estimates for Green kernel and Martin kernel of $-L_mu$. We use these estimates to prove the existence, uniqueness and a priori estimates of the solution to the boundary value problem with measures for linear equations associated to $-L_mu$
Let $Omega subset {mathbb R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $F subset partial Omega$ be a $C^2$ submanifold of dimension $0 leq k leq N-2$. Put $delta_F(x)=dist(x,F)$, $V=delta_F^{-2}$ in $Omega$ and $L_{gamma V}=Delta + gamma V$. Denot
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.
We study the Cauchy problem for the generalized elliptic and non-elliptic derivative nonlinear Schrodinger equations, the existence of the scattering operators and the global well posedness of solutions with small data in Besov spaces and in modulati
We study both divergence and non-divergence form parabolic and elliptic equations in the half space ${x_d>0}$ whose coefficients are the product of $x_d^alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $alpha in (-
We introduce a vector differential operator $mathbf{P}$ and a vector boundary operator $mathbf{B}$ to derive a reproducing kernel along with its associated Hilbert space which is shown to be embedded in a classical Sobolev space. This reproducing ker