ﻻ يوجد ملخص باللغة العربية
We present new accurate Period-Luminosity (PL) and Period-Wesenheit (PW) relations in the V,J,Ks bands based on a sample of more than 4500 Cepheids in the Large Magellanic Cloud (LMC) whose photometry was obtained in the context of the VISTA Magellanic Clouds (VMC) Survey. The excellent precision of these data allows us to study the geometry of the LMC and to establish a solid baseline for extra-galactic distance scale studies. To calibrate the zero points of these PL/PW relations, we adopted Gaia Data Release 2 parallaxes for more than 2000 Milky Way Cepheids. The implications for the measurement of $H_0$ are briefly discussed.
We present the results of the light curve model fitting technique applied to optical and near-infrared photometric data for a sample of 18 Classical Cepheids (11 fundamentals and 7 first overtones) in the Large Magellanic Cloud (LMC). We use optical
Evolved stars near the tip of the red giant branch (TRGB) show solar-like oscillations with periods spanning hours to months and amplitudes ranging from $sim$1 mmag to $sim$100 mmag. The systematic detection of the resulting photometric variations wi
We use parallax data from the Gaia second data release (GDR2), combined with parallax data based on Hipparcos and HST data, to derive the period-luminosity-metallicity (PLZ) relation for Galactic classical cepheids (CCs) in the V,K, and Wesenheit WVK
For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetr
Stellar distances constitute a foundational pillar of astrophysics. The publication of 1.47 billion stellar parallaxes from Gaia is a major contribution to this. Yet despite Gaias precision, the majority of these stars are so distant or faint that th