ﻻ يوجد ملخص باللغة العربية
Efficient detection of the magnetic state at nanoscale dimensions is an important step to utilize spin logic devices for computing. Magnetoresistance effects have been hitherto used in magnetic state detection, but they suffer from energetically unfavorable scaling and do not generate an electromotive force that can be used to drive a circuit element for logic device applications. Here, we experimentally show that a favorable miniaturization law is possible via the use of spin-Hall detection of the in-plane magnetic state of a magnet. This scaling law allows us to obtain a giant signal by spin Hall effect in CoFe/Pt nanostructures and quantify an effective spin-to-charge conversion rate for the CoFe/Pt system. The spin-to-charge conversion can be described as a current source with an internal resistance, i.e., it generates an electromotive force that can be used to drive computing circuits. We predict that the spin-orbit detection of magnetic states can reach high efficiency at reduced dimensions, paving the way for scalable spin-orbit logic devices and memories.
Ferromagnetic (FM)/heavy metal (HM) nanostructures can be used for the magnetic state readout in the proposed magneto-electric spin-orbit logic by locally injecting a spin-polarized current and measure the spin-to-charge conversion via the spin Hall
In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose new experiments aimed at demonstrating nov
We study effects originating from the strong spin orbit coupling in CoFeB/MgO heterostructures with heavy metal (HM) underlayers. The perpendicular magnetic anisotropy at the CoFeB/MgO interface, the spin Hall angle of the heavy metal layer, current
Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled
The methodology used to obtain the values of the spin-orbit couplings from the spin expectation values from perturbation theory was incorrect. As a result Figs. 2 and 3 are incorrect.