ﻻ يوجد ملخص باللغة العربية
High resolution galaxy spectra contain much information about galactic physics, but the high dimensionality of these spectra makes it difficult to fully utilize the information they contain. We apply variational autoencoders (VAEs), a non-linear dimensionality reduction technique, to a sample of spectra from the Sloan Digital Sky Survey. In contrast to Principal Component Analysis (PCA), a widely used technique, VAEs can capture non-linear relationships between latent parameters and the data. We find that a VAE can reconstruct the SDSS spectra well with only six latent parameters, outperforming PCA with the same number of components. Different galaxy classes are naturally separated in this latent space, without class labels having been given to the VAE. The VAE latent space is interpretable because the VAE can be used to make synthetic spectra at any point in latent space. For example, making synthetic spectra along tracks in latent space yields sequences of realistic spectra that interpolate between two different types of galaxies. Using the latent space to find outliers may yield interesting spectra: in our small sample, we immediately find unusual data artifacts and stars misclassified as galaxies. In this exploratory work, we show that VAEs create compact, interpretable latent spaces that capture non-linear features of the data. While a VAE takes substantial time to train (~1 day for 48000 spectra), once trained, VAEs can enable the fast exploration of large astronomical data sets.
In order to process efficiently ever-higher dimensional data such as images, sentences, or audio recordings, one needs to find a proper way to reduce the dimensionality of such data. In this regard, SVD-based methods including PCA and Isomap have bee
In this work, we present a quantum neighborhood preserving embedding and a quantum local discriminant embedding for dimensionality reduction and classification. We demonstrate that these two algorithms have an exponential speedup over their respectiv
Manifold-valued data naturally arises in medical imaging. In cognitive neuroscience, for instance, brain connectomes base the analysis of coactivation patterns between different brain regions on the analysis of the correlations of their functional Ma
With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysi
Extremely high data rates expected in next-generation radio interferometers necessitate a fast and robust way to process measurements in a big data context. Dimensionality reduction can alleviate computational load needed to process these data, in te