ترغب بنشر مسار تعليمي؟ اضغط هنا

Signal Processing Firmware for the Low Frequency Aperture Array

97   0   0.0 ( 0 )
 نشر من قبل Giovanni Comoretto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The signal processing firmware that has been developed for the Low Frequency Aperture Array component of the Square Kilometre Array is described. The firmware is implemented on a dual FPGA board, that is capable of processing the streams from 16 dual polarization antennas. Data processing includes channelization of the sampled data for each antenna, correction for instrumental response and for geometric delays and formation of one or more beams by combining the aligned streams. The channelizer uses an oversampling polyphase filterbank architecture, allowing a frequency continuous processing of the input signal without discontinuities between spectral channels. Each board processes the streams from 16 antennas, as part of larger beamforming system, linked by standard Ethernet interconnections. There are envisaged to be 8192 of these signal processing platforms in the first phase of the Square Kilometre array so particular attention has been devoted to ensure the design is low cost and low power.



قيم البحث

اقرأ أيضاً

The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observator y in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper will focus on a brief discussion of the as-built MWA system, highlighting several novel characteristics of the instrument, and a brief progress report (as of June 2012) on the final construction phase. Practical completion of the MWA is expected in November 2012, with commissioning commencing from approximately August 2012 and operations commencing near mid 2013. A brief description of recent science results from the MWA prototype instrument is given.
217 - T. Lanting , M. Dobbs , H. Spieler 2009
We have designed and demonstrated a Superconducting Quantum Interference Device (SQUID) array linearized with cryogenic feedback. To achieve the necessary loop gain a 300 element series array SQUID is constructed from three monolithic 100-element ser ies arrays. A feedback resistor completes the loop from the SQUID output to the input coil. The short feedback path of this Linearized SQUID Array (LISA) allows for a substantially larger flux-locked loop bandwidth as compared to a SQUID flux-locked loop that includes a room temperature amplifier. The bandwidth, linearity, noise performance, and dynamic range of the LISA are sufficient for its use in our target application: the multiplexed readout of transition-edge sensor bolometers.
This document describes the top level requirements for the SKA-AAMID telescope as determined by the SKA key science projects. These include parameters such as operating frequency range,instantaneous bandwidth (total processed bandwidth), field of vie w (or survey speed, as appropriate), sensitivity, dynamic range, polarization purity etc. Moreover, through the definition of a set of science requirements, this document serves as input to a number of other documents contained within the System Requirements Review package. (particularly SKA-TEL-MFAA-0200005: `SKA-AAMID System Requirements and SKA-TEL-MFAA-0200008: `MFAA Requirements).
The Square Kilometre Array (SKA) is the next generation radio telescope. Aperture Arrays (AA) are considered for SKA-2 for frequencies up to 1.4 GHz (SKA-1 uses AAs up to 350 MHz). This document presents design considerations of this Mid-Frequency Ap erture Array (MFAA) element and possible system architectures complying with the SKA-2 system requirements, combining high sensitivity with a superb survey speed. The architectural analyses has been submitted to the System Requirements Review of the MFAA element.
LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFARs new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا