ترغب بنشر مسار تعليمي؟ اضغط هنا

J-PET Framework: Software platform for PET tomography data reconstruction and analysis

119   0   0.0 ( 0 )
 نشر من قبل Wojciech Krzemien
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

J-PET Framework is an open-source software platform for data analysis, written in C++ and based on the ROOT package. It provides a common environment for implementation of reconstruction, calibration and filtering procedures, as well as for user-level analyses of Positron Emission Tomography data. The library contains a set of building blocks that can be combined by users with even little programming experience, into chains of processing tasks through a convenient, simple and well-documented API. The generic input-output interface allows processing the data from various sources: low-level data from the tomography acquisition system or from diagnostic setups such as digital oscilloscopes, as well as high-level tomography structures e.g. sinograms or a list of lines-of-response. Moreover, the environment can be interfaced with Monte Carlo simulation packages such as GEANT and GATE, which are commonly used in the medical scientific community.



قيم البحث

اقرأ أيضاً

102 - W. Krzemien , D. Alfs , P. Bialas 2015
Modern TOF-PET scanner systems require high-speed computing resources for efficient data processing, monitoring and image reconstruction. In this article we present the data flow and software architecture for the novel TOF-PET scanner developed by th e J-PET collaboration. We discuss the data acquisition system, reconstruction framework and image reconstruction software. Also, the concept of computing outside hospitals in the remote centers such as Swierk Computing Centre in Poland is presented.
Modern TOF-PET scanner systems require high-speed computing resources for efficient data processing, monitoring and image reconstruction. In this article we present the data flow and software architecture for the novel TOF-PET scanner developed by th e J-PET collaboration. We discuss the data acquisition system, reconstruction framework and image reconstruction software. Also, the concept of computing outside hospitals in the remote centers such as Swierk Computing Centre in Poland is presented.
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diamete r of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.
In the present ongoing study, we are proposing a prototype model for positron emission tomography detection technology by introduction of a new discriminatory window parameter. It can be a new generation PET detection technique. We introduced Polariz ation Measurement of the annihilation photons(generated from the annihilation of positron and electron) as an additional parameter in proposed prototype, to correlate annihilation photons of a particular annihilation event. The motivation behind this introduction is Quantum Entanglement relation between the two annihilation photons. These two oppositely emitted photons are linearly polarized at right angle to each other. Simulations studies for this research work are undergoing and some preliminary results are presented here.
We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs of such photons, flying back-to-back, originate from e+e- annihilations inside a 1-mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time of flight information included.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا