ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality of citation distributions and its explanation

99   0   0.0 ( 0 )
 نشر من قبل Michael Golosovsky
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Universality or near-universality of citation distributions was found empirically a decade ago but its theoretical justification has been lacking so far. Here, we systematically study citation distributions for different disciplines in order to characterize this putative universality and to understand it theoretically. Using our calibrated model of citation dynamics, we find microscopic explanation of the universality of citation distributions and explain deviations therefrom. We demonstrate that citation count of the paper is determined, on the one hand, by its fitness -- the attribute which, for most papers, is set at the moment of publication. The fitness distributions for different disciplines are very similar and can be approximated by the log-normal distribution. On another hand, citation dynamics of a paper is related to the mechanism by which the knowledge about it spreads in the scientific community. This viral propagation is non-universal and discipline-specific. Thus, universality of citation distributions traces its origin to the fitness distribution, while deviations from universality are associated with the discipline-specific citation dynamics of papers.



قيم البحث

اقرأ أيضاً

We study the distributions of citations received by a single publication within several disciplines, spanning broad areas of science. We show that the probability that an article is cited $c$ times has large variations between different disciplines, but all distributions are rescaled on a universal curve when the relative indicator $c_f=c/c_0$ is considered, where $c_0$ is the average number of citations per article for the discipline. In addition we show that the same universal behavior occurs when citation distributions of articles published in the same field, but in different years, are compared. These findings provide a strong validation of $c_f$ as an unbiased indicator for citation performance across disciplines and years. Based on this indicator, we introduce a generalization of the h-index suitable for comparing scientists working in different fields.
Many of the essential features of the evolution of scientific research are imprinted in the structure of citation networks. Connections in these networks imply information about the transfer of knowledge among papers, or in other words, edges describ e the impact of papers on other publications. This inherent meaning of the edges infers that citation networks can exhibit hierarchical features, that is typical of networks based on decision-making. In this paper, we investigate the hierarchical structure of citation networks consisting of papers in the same field. We find that the majority of the networks follow a universal trend towards a highly hierarchical state, and i) the various fields display differences only concerning their phase in life (distance from the birth of a field) or ii) the characteristic time according to which they are approaching the stationary state. We also show by a simple argument that the alterations in the behavior are related to and can be understood by the degree of specialization corresponding to the fields. Our results suggest that during the accumulation of knowledge in a given field, some papers are gradually becoming relatively more influential than most of the other papers.
172 - Sebastian Grauwin 2012
Using a large database (~ 215 000 records) of relevant articles, we empirically study the complex systems field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obta in a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific trading zones, ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).
We present a simple generalization of Hirschs h-index, Z = sqrt{h^{2}+C}/sqrt{5}, where C is the total number of citations. Z is aimed at correcting the potentially excessive penalty made by h on a scientists highly cited papers, because for the majo rity of scientists analyzed, we find the excess citation fraction (C-h^{2})/C to be distributed closely around the value 0.75, meaning that 75 percent of the authors impact is neglected. Additionally, Z is less sensitive to local changes in a scientists citation profile, namely perturbations which increase h while only marginally affecting C. Using real career data for 476 physicists careers and 488 biologist careers, we analyze both the distribution of $Z$ and the rank stability of Z with respect to the Hirsch index h and the Egghe index g. We analyze careers distributed across a wide range of total impact, including top-cited physicists and biologists for benchmark comparison. In practice, the Z-index requires the same information needed to calculate h and could be effortlessly incorporated within career profile databases, such as Google Scholar and ResearcherID. Because Z incorporates information from the entire publication profile while being more robust than h and g to local perturbations, we argue that Z is better suited for ranking comparisons in academic decision-making scenarios comprising a large number of scientists.
Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives higher citations than the ordinary. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two folds. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive ageing mechanism. The nodes weight is drawn from the distribution of impact factors of journals and the ageing transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behaviour. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا