ﻻ يوجد ملخص باللغة العربية
An approach to the modelling of volatile time series using a class of uniformity-preserving transforms for uniform random variables is proposed. V-transforms describe the relationship between quantiles of the stationary distribution of the time series and quantiles of the distribution of a predictable volatility proxy variable. They can be represented as copulas and permit the formulation and estimation of models that combine arbitrary marginal distributions with copula processes for the dynamics of the volatility proxy. The idea is illustrated using a Gaussian ARMA copula process and the resulting model is shown to replicate many of the stylized facts of financial return series and to facilitate the calculation of marginal and conditional characteristics of the model including quantile measures of risk. Estimation is carried out by adapting the exact maximum likelihood approach to the estimation of ARMA processes and the model is shown to be competitive with standard GARCH in an empirical application to Bitcoin return data.
An approach to modelling volatile financial return series using stationary d-vine copula processes combined with Lebesgue-measure-preserving transformations known as v-transforms is proposed. By developing a method of stochastically inverting v-trans
The central idea of the paper is to present a general simple patchwork construction principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given marginal distributions. This is of particular i
We present a constructive approach to Bernstein copulas with an admissible discrete skeleton in arbitrary dimensions when the underlying marginal grid sizes are smaller than the number of observations. This prevents an overfitting of the estimated de
We propose a new unsupervised learning method for clustering a large number of time series based on a latent factor structure. Each cluster is characterized by its own cluster-specific factors in addition to some common factors which impact on all th
We present a constructive and self-contained approach to data driven general partition-of-unity copulas that were recently introduced in the literature. In particular, we consider Bernstein-, negative binomial and Poisson copulas and present a soluti