ترغب بنشر مسار تعليمي؟ اضغط هنا

GRET: Global Representation Enhanced Transformer

293   0   0.0 ( 0 )
 نشر من قبل Rongxiang Weng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformer, based on the encoder-decoder framework, has achieved state-of-the-art performance on several natural language generation tasks. The encoder maps the words in the input sentence into a sequence of hidden states, which are then fed into the decoder to generate the output sentence. These hidden states usually correspond to the input words and focus on capturing local information. However, the global (sentence level) information is seldom explored, leaving room for the improvement of generation quality. In this paper, we propose a novel global representation enhanced Transformer (GRET) to explicitly model global representation in the Transformer network. Specifically, in the proposed model, an external state is generated for the global representation from the encoder. The global representation is then fused into the decoder during the decoding process to improve generation quality. We conduct experiments in two text generation tasks: machine translation and text summarization. Experimental results on four WMT machine translation tasks and LCSTS text summarization task demonstrate the effectiveness of the proposed approach on natural language generation.



قيم البحث

اقرأ أيضاً

83 - Yu Shi 2021
The Transformer model is widely used in natural language processing for sentence representation. However, the previous Transformer-based models focus on function words that have limited meaning in most cases and could merely extract high-level semant ic abstraction features. In this paper, two approaches are introduced to improve the performance of Transformers. We calculated the attention score by multiplying the part-of-speech weight vector with the correlation coefficient, which helps extract the words with more practical meaning. The weight vector is obtained by the input text sequence based on the importance of the part-of-speech. Furthermore, we fuse the features of each layer to make the sentence representation results more comprehensive and accurate. In experiments, we demonstrate the effectiveness of our model Transformer-F on three standard text classification datasets. Experimental results show that our proposed model significantly boosts the performance of text classification as compared to the baseline model. Specifically, we obtain a 5.28% relative improvement over the vanilla Transformer on the simple tasks.
Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting rid of the noises is es sential to improve its performance. Traditional attentive models attend to all words without explicit constraint, which results in inaccurate concentration on some dispensable words. In this work, we propose using syntax to guide the text modeling by incorporating explicit syntactic constraints into attention mechanisms for better linguistically motivated word representations. In detail, for self-attention network (SAN) sponsored Transformer-based encoder, we introduce syntactic dependency of interest (SDOI) design into the SAN to form an SDOI-SAN with syntax-guided self-attention. Syntax-guided network (SG-Net) is then composed of this extra SDOI-SAN and the SAN from the original Transformer encoder through a dual contextual architecture for better linguistics inspired representation. The proposed SG-Net is applied to typical Transformer encoders. Extensive experiments on popular benchmark tasks, including machine reading comprehension, natural language inference, and neural machine translation show the effectiveness of the proposed SG-Net design.
260 - Yekun Chai , Shuo Jin , Xinwen Hou 2020
Self-attention mechanisms have made striking state-of-the-art (SOTA) progress in various sequence learning tasks, standing on the multi-headed dot product attention by attending to all the global contexts at different locations. Through a pseudo info rmation highway, we introduce a gated component self-dependency units (SDU) that incorporates LSTM-styled gating units to replenish internal semantic importance within the multi-dimensional latent space of individual representations. The subsidiary content-based SDU gates allow for the information flow of modulated latent embeddings through skipped connections, leading to a clear margin of convergence speed with gradient descent algorithms. We may unveil the role of gating mechanism to aid in the context-based Transformer modules, with hypothesizing that SDU gates, especially on shallow layers, could push it faster to step towards suboptimal points during the optimization process.
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-t rained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code of this paper can be obtained from https://github.com/thunlp/ERNIE.
103 - Boer Lyu , Lu Chen , Su Zhu 2021
Chinese short text matching is a fundamental task in natural language processing. Existing approaches usually take Chinese characters or words as input tokens. They have two limitations: 1) Some Chinese words are polysemous, and semantic information is not fully utilized. 2) Some models suffer potential issues caused by word segmentation. Here we introduce HowNet as an external knowledge base and propose a Linguistic knowledge Enhanced graph Transformer (LET) to deal with word ambiguity. Additionally, we adopt the word lattice graph as input to maintain multi-granularity information. Our model is also complementary to pre-trained language models. Experimental results on two Chinese datasets show that our models outperform various typical text matching approaches. Ablation study also indicates that both semantic information and multi-granularity information are important for text matching modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا