ﻻ يوجد ملخص باللغة العربية
We present a method to solve two-stage stochastic problems with fixed recourse when the uncertainty space can have either discrete or continuous distributions. Given a partition of the uncertainty space, the method is addressed to solve a discrete problem with one scenario for each element of the partition (sub-regions of the uncertainty space). Fixing first stage variables, we formulate a second stage subproblem for each element, and exploiting information from the dual of these problems, we provide conditions that the partition must satisfy to obtain the optimal solution. These conditions provide guidance on how to refine the partition, converging iteratively to the optimal solution. Results from computational experiments show how the method automatically refines the partition of the uncertainty space in the regions of interest for the problem. Our algorithm is a generalization of the adaptive partition-based method presented by Song & Luedtke (2015) for discrete distributions, extending its applicability to more general cases.
Stochastic gradient methods (SGMs) have been widely used for solving stochastic optimization problems. A majority of existing works assume no constraints or easy-to-project constraints. In this paper, we consider convex stochastic optimization proble
We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improvi
Two-stage optimization with recourse model is an important and widely used model, which has been studied extensively these years. In this article, we will look at a new variant of it, called the two-stage optimization with recourse and revocation mod
This paper applies the N-block PCPM algorithm to solve multi-scale multi-stage stochastic programs, with the application to electricity capacity expansion models. Numerical results show that the proposed simplified N-block PCPM algorithm, along with
We consider stochastic programs conditional on some covariate information, where the only knowledge of the possible relationship between the uncertain parameters and the covariates is reduced to a finite data sample of their joint distribution. By ex