Another determinantal inequality involving partial traces


الملخص بالإنكليزية

Let $A$ be a positive semidefinite $mtimes m$ block matrix with each block $n$-square, then the following determinantal inequality for partial traces holds [ (mathrm{tr} A)^{mn} - det(mathrm{tr}_2 A)^n ge bigl| det A - det(mathrm{tr}_1 A)^m bigr|, ] where $mathrm{tr}_1$ and $mathrm{tr}_2$ stand for the first and second partial trace, respectively. This result improves a recent result of Lin [14].

تحميل البحث