ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillating Strange Quark Matter Objects Excited in Stellar Systems

97   0   0.0 ( 0 )
 نشر من قبل Lukasz Bratek
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marek Kutschera




اسأل ChatGPT حول البحث

It is shown that strange quark matter (SQM) objects, stars, and planets, can very efficiently convert the mechanical energy into hadronic energy when they oscillate. This is because the mass density at the edge of SQM objects, $rho_0{=}4.7{times}10^{14}frac{mathrm{g}}{mathrm{cm}^3}$, is the critical density below which SQM is unstable with respect to decay into photons, hadrons, and leptons. We consider here radial oscillations of SQM objects that could be induced in stellar or planetary systems where tidal interactions are ubiquitous. Oscillations of $0.1%$ radius amplitude already result in $1,$keV per unit baryon number excitation near the surface of SQM stars. The excitation energy is converted into electromagnetic energy in a short time of 1 ms, during a few oscillations. Higher amplitude oscillations result in faster energy release that could lead to fragmentation or dissolution of SQM stars. This would have significant consequences for hypothetical SQM star binaries and planetary systems of SQM planets with regard to gravitational wave emission.



قيم البحث

اقرأ أيضاً

156 - I. Sagert , T. Fischer , M.Hempel 2010
Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bounce evolution of core-collapse supernovae and introduce the effects from strong interactions to increase the maximum mass of hybrid stars. In the MIT bag model, together with the strange quark mass and the bag constant, the strong coupling constant $alpha_s$ provides a parameter to set the beginning and extension of the quark phase and with this the mass and radius of hybrid stars.
High energy density ($eps$) and temperature (T) links general relativity and hydrodynamics leading to a lower bound for the ratio of shear viscosity ($eta$) and entropy density ($s$). We get the interesting result that the bound is saturated in the s imple model for quark matter that we use for strange stars at the surface for $T sim 80 MeV$. At this $T$ we have the possibility of cosmic separation of phases. At the surface of the star where the pressure is zero - the density $eps$ has a fixed value for all stars of various masses with correspondingly varying central energy density $eps_c$. Inside the star where this density is higher, the ratio of $eta/s$ is larger and are like the known results found for perturbative QCD. This serves as a check of our calculation. The deconfined quarks at the surface of the strange star at $T = 80 MeV$ seem to constitute the most perfect interacting fluid permitted by nature.
120 - R. D. Young 2013
The strange quark scalar content plays an important role in both the description of nucleon structure and in the determination of dark matter direct detection cross sections. As a measure of the strange-quark contribution to the nucleon mass, the str ange-quark sigma term (sigma_s) provides important insight into the nature of mass generation in QCD. The phenomenological determination of sigma_s exhibits a wide range of variation, with values suggesting that the strange quark contributes anywhere between 0 and more than 30% of the nucleon mass. In the context of dark matter searches, coupled with relatively large Higgs coupling to strangeness, this variation dominates the uncertainty in predicted cross sections for a large class of dark matter models. Here we report on the recent results in lattice QCD, which are now giving a far more precise determination of sigma_s than can be inferred from phenomenology. As a consequence, the lattice determinations of sigma_s can now dramatically reduce the uncertainty in dark matter cross sections associated with the hadronic matrix elements.
We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.
868 - Shou-wan Chen , Hui Dong , 2009
A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches esp ecially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا