ﻻ يوجد ملخص باللغة العربية
Interest in predicting multivariate probability distributions is growing due to the increasing availability of rich datasets and computational developments. Scoring functions enable the comparison of forecast accuracy, and can potentially be used for estimation. A scoring function for multivariate distributions that has gained some popularity is the energy score. This is a generalization of the continuous ranked probability score (CRPS), which is widely used for univariate distributions. A little-known, alternative generalization is the multivariate CRPS (MCRPS). We propose a theoretical framework for scoring functions for multivariate distributions, which encompasses the energy score and MCRPS, as well as the quadratic score, which has also received little attention. We demonstrate how this framework can be used to generate new scores. For univariate distributions, it is well-established that the CRPS can be expressed as the integral over a quantile score. We show that, in a similar way, scoring functions for multivariate distributions can be disintegrated to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including those for densities and cumulative distributions. To compute the scoring functions, we propose a simple numerical algorithm. We illustrate our proposals using simulated and stock returns data.
Proper scoring rules are commonly applied to quantify the accuracy of distribution forecasts. Given an observation they assign a scalar score to each distribution forecast, with the the lowest expected score attributed to the true distribution. The e
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical
Three types of integral representations for the cumulative distribution functions of convolutions of non-central p-variate gamma distributions are given by integration of elementary complex functions over the p-cube Cp = (-pi,pi]x...x(-pi,pi]. In par
In this paper, we have developed a new class of sampling schemes for estimating parameters of binomial and Poisson distributions. Without any information of the unknown parameters, our sampling schemes rigorously guarantee prescribed levels of precision and confidence.
This paper investigates the rank distribution, cumulative probability, and probability density of price returns for the stocks traded in the KSE and the KOSDAQ market. This research demonstrates that the rank distribution is consistent approximately