ﻻ يوجد ملخص باللغة العربية
Background: In epidemiology, causal inference and prediction modeling methodologies have been historically distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection strategies for causal questions. Although tools originally designed for prediction are finding applications in causal inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study is to assess the potential benefit of using DAGs in clinical risk prediction modeling. Methods and Findings: We explore how incorporating knowledge about the underlying causal structure can provide insights about the transportability of diagnostic clinical risk prediction models to different settings. A single-predictor model in the causal direction is likely to have better transportability than one in the anticausal direction. We further probe whether causal knowledge can be used to improve predictor selection. We empirically show that the Markov Blanket, the set of variables including the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors for that outcome. Conclusions: Our findings challenge the generally accepted notion that a change in the distribution of the predictors does not affect diagnostic clinical risk prediction model calibration if the predictors are properly included in the model. Furthermore, using DAGs to identify Markov Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong knowledge of the underlying causal structure exists or can be learned.
The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this pape
In the genomic era, the identification of gene signatures associated with disease is of significant interest. Such signatures are often used to predict clinical outcomes in new patients and aid clinical decision-making. However, recent studies have s
Clinical prediction models (CPMs) are used to predict clinically relevant outcomes or events. Typically, prognostic CPMs are derived to predict the risk of a single future outcome. However, with rising emphasis on the prediction of multi-morbidity, t
Missing data is a pervasive problem in data analyses, resulting in datasets that contain censored realizations of a target distribution. Many approaches to inference on the target distribution using censored observed data, rely on missing data models
We introduce a structure for the directed acyclic graph (DAG) and a mechanism design based on that structure so that peers can reach consensus at large scale based on proof of work (PoW). We also design a mempool transaction assignment method based o