ترغب بنشر مسار تعليمي؟ اضغط هنا

ODUSSEAS: A machine learning tool to derive effective temperature and metallicity for M dwarf stars

107   0   0.0 ( 0 )
 نشر من قبل Alexandros Antoniadis-Karnavas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. The derivation of spectroscopic parameters for M dwarf stars is very important in the fields of stellar and exoplanet characterization. The goal of this work is the creation of an automatic computational tool, able to derive quickly and reliably the T$_{mathrm{eff}}$ and [Fe/H] of M dwarfs by using their optical spectra, that can be obtained by different spectrographs with different resolutions. Methods. ODUSSEAS (Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes) is based on the measurement of the pseudo equivalent widths for more than 4000 stellar absorption lines and on the use of the machine learning Python package scikit-learn for predicting the stellar parameters. Results. We show that our tool is able to derive parameters accurately and with high precision, having precision errors of ~30 K for T$_{mathrm{eff}}$ and ~0.04 dex for [Fe/H]. The results are consistent for spectra with resolutions between 48000 and 115000 and SNR above 20.



قيم البحث

اقرأ أيضاً

79 - Shuang Gao 2017
The fraction of binary stars (fb) is one of most valuable tool to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity ([Fe/H]) by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-types in the third data release (DR3) of LAMOST are selected to estimate fb. Contributions to a profile of DRV from radial velocity (RV) error of single stars (sigma) and orbital motion of binary stars are evaluated from the profile of DRV. Finally, we employ 365,911 stars with randomly repeating spectral observations to present a detailed analysis of fb and sigma in the two-dimensional (2D) space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, sigma of the sample for different Teff and [Fe/H] are fitted. Metal-rich cold stars in our sample have the best RV measurement.
M subdwarfs are low-metallicity M dwarfs that typically inhabit the halo population of the Galaxy. Metallicity controls the opacity of stellar atmospheres; in metal poor stars, hydrostatic equilibrium is reached at a smaller radius, leading to smalle r radii for a given effective temperature. We compile a sample of 88 stars that span spectral classes K7 to M6 and include stars with metallicity classes from solar-metallicity dwarf stars to the lowest metallicity ultra-subdwarfs to test how metallicity changes the stellar radius. We fit models to Palomar Double Spectrograph (DBSP) optical spectra to derive effective temperatures ($T_mathrm{eff}$) and we measure bolometric luminosities ($L_mathrm{bol}$) by combining broad wavelength-coverage photometry with Gaia parallaxes. Radii are then computed by combining the $T_mathrm{eff}$ and $L_mathrm{bol}$ using the Stefan-Boltzman law. We find that for a given temperature, ultra-subdwarfs can be as much as five times smaller than their solar-metallicity counterparts. We present color-radius and color-surface brightness relations that extend down to [Fe/H] of $-$2.0 dex, in order to aid the radius determination of M subdwarfs, which will be especially important for the WFIRST exoplanetary microlensing survey.
Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature ($T_{rm{eff}}$) and the Stefan-Boltzmann law to determine radii of 183 nearby K7-M7 single stars with a precision of 2-5%. Our improved stellar parameters enable us to develop model-independent relations between $T_{rm{eff}}$ or absolute magnitude and radius, as well as between color and $T_{rm{eff}}$. The derived $T_{rm{eff}}$-radius relation depends strongly on [Fe/H], as predicted by theory. The relation between absolute $K_S$ magnitude and radius can predict radii accurate to $simeq$3%. We derive bolometric corrections to the $VR_CI_CgrizJHK_S$ and Gaia passbands as a function of color, accurate to 1-3%. We confront the reliability of predictions from Dartmouth stellar evolution models using a Markov Chain Monte Carlo to find the values of unobservable model parameters (mass, age) that best reproduce the observed effective temperature and bolometric flux while satisfying constraints on distance and metallicity as Bayesian priors. With the inferred masses we derive a semi-empirical mass-absolute magnitude relation with a scatter of 2% in mass. The best-agreement models over-predict stellar $T_{rm{eff}}$s by an average of 2.2% and under-predict stellar radii by 4.6%, similar to differences with values from low-mass eclipsing binaries. These differences are not correlated with metallicity, mass, or indicators of activity, suggesting issues with the underlying model assumptions e.g., opacities or convective mixing length.
We present a new direct spectroscopic calibration for a fast estimation of the stellar metallicity [Fe/H]. These calibrations were computed using a large sample of 451 solar-type stars for which we have precise spectroscopic parameters derived from h igh quality spectra. The new [Fe/H] calibration is based on weak Fe I lines, which are expected to be less dependent on surface gravity and microturbulence, and require only a pre-determination of the effective temperature. This temperature can be obtained using a previously presented line-ratio calibration. We also present a simple code that uses the calibrations and procedures presented in these works to obtain both the effective temperature and the [Fe/H] estimate. The code, written in C, is freely available for the community and may be used as an extension of the ARES code. We test these calibrations for 582 independent FGK stars. We show that the code can be used as a precise and fast indicator of the spectroscopic temperature and metallicity for dwarf FKG stars with effective temperatures ranging from 4500 K to 6500 K and with [Fe/H] ranging from -0.8 dex to 0.4 dex.
269 - N. Lodieu , F. Allard (3 2019
The aim of the project is to define a metallicity/gravity/temperature scale vs spectral types for metal-poor M dwarfs. We obtained intermediate-resolution ultraviolet (R~3300), optical (R~5400), and near-infrared (R~3900) spectra of 43 M subdwarfs (sdM), extreme subdwarfs (esdM), and ultra-subdwarfs (usdM) with the X-shooter spectrograph on the European Southern Observatory Very Large Telescope. We compared our atlas of spectra to the latest BT-Settl synthetic spectral energy distribution over a wide range of metallicities, gravities, and effective temperatures to infer the physical properties for the whole M dwarf sequence (M0--M9.5) at sub-solar metallicities and constrain the latest state-of-the-art atmospheric models. The BT-Settl models reproduce well the observed spectra across the 450-2500 nm wavelength range except for a few regions. We find that the best fits are obtained for gravities of log(g) = 5.0-5.5 dex for the three metal classes. We infer metallicities of [Fe/H] = -0.5, -1.5, and -2.0+/-0.5 dex and effective temperatures of 3700-2600 K, 3800-2900 K, and 3700-2900 K for subdwarfs, extreme subdwarfs, and ultra-subdwarfs, respectively. Metal-poor M dwarfs tend to be warmer by about 200+/-100 K and exhibit higher gravity than their solar-metallicity counterparts. We derive abundances of several elements (Fe, Na, K, Ca, Ti) for our sample but cannot describe their atmospheres with a single metallicity parameter. Our metallicity scale expands the current scales available for midly metal-poor planet-host low-mass stars. Our compendium of moderate-resolution spectra covering the 0.45--2.5 micron range represents an important legacy value for large-scale surveys and space missions to come.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا