ﻻ يوجد ملخص باللغة العربية
Aims. The derivation of spectroscopic parameters for M dwarf stars is very important in the fields of stellar and exoplanet characterization. The goal of this work is the creation of an automatic computational tool, able to derive quickly and reliably the T$_{mathrm{eff}}$ and [Fe/H] of M dwarfs by using their optical spectra, that can be obtained by different spectrographs with different resolutions. Methods. ODUSSEAS (Observing Dwarfs Using Stellar Spectroscopic Energy-Absorption Shapes) is based on the measurement of the pseudo equivalent widths for more than 4000 stellar absorption lines and on the use of the machine learning Python package scikit-learn for predicting the stellar parameters. Results. We show that our tool is able to derive parameters accurately and with high precision, having precision errors of ~30 K for T$_{mathrm{eff}}$ and ~0.04 dex for [Fe/H]. The results are consistent for spectra with resolutions between 48000 and 115000 and SNR above 20.
The fraction of binary stars (fb) is one of most valuable tool to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity ([Fe/H]) by employing the differential radial
M subdwarfs are low-metallicity M dwarfs that typically inhabit the halo population of the Galaxy. Metallicity controls the opacity of stellar atmospheres; in metal poor stars, hydrostatic equilibrium is reached at a smaller radius, leading to smalle
Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars complex spectra and dissimilarity to the Sun. We exploit an
We present a new direct spectroscopic calibration for a fast estimation of the stellar metallicity [Fe/H]. These calibrations were computed using a large sample of 451 solar-type stars for which we have precise spectroscopic parameters derived from h
The aim of the project is to define a metallicity/gravity/temperature scale vs spectral types for metal-poor M dwarfs. We obtained intermediate-resolution ultraviolet (R~3300), optical (R~5400), and near-infrared (R~3900) spectra of 43 M subdwarfs