ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio morphology-accretion mode link in FRII low-excitation radio galaxies

79   0   0.0 ( 0 )
 نشر من قبل Duccio Macconi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fanaroff-Riley II low-excitation radio galaxies (FRII-LERGs) are characterized by weak nuclear excitation on pc-scales and by properties typical of powerful FRIIs (defined as high-excitation, hereafter HERGs/BLRGs) on kp-scales. Since a link between the accretion properties and the power of the produced jets is expected both from theory and observations, their nature is still debated. In this work we investigate the X-ray properties of a complete sample of 19 FRII-LERGs belonging to the 3CR catalog, exploiting Chandra and XMM-Newton archival data. We also analyze 32 FRII-HERGs/BLRGs with Chandra data as a control sample. We compared FRII-LERG and FRII-HERG/BLRG X-ray properties and optical data available in literature to obtain a wide outlook of their behavior. The low accretion rate estimates for FRII-LERGs, from both X-ray and optical bands, allow us to firmly reject the hypothesis for that they are the highly obscured counterpart of powerful FRII-HERGs/BLRGs. Therefore, at least two hypothesis can be invoked to explain the FRII-LERGs nature: (i) they are evolving from classical FRIIs because of the depletion of accreting cold gas in the nuclear region, while the extended radio emission is the heritage of a past efficiently accreting activity; (ii) they are an intrinsically distinct class of objects with respect to classical FRIs/FRIIs. Surprisingly, in this direction a correlation between accretion rates and environmental richness is found in our sample. The richer the environment, the more inefficient is the accretion. In this framework, the FRII-LERGs are intermediate between FRIs and FRII-HERGs/BLRGs both in terms of accretion rate and environment.



قيم البحث

اقرأ أيضاً

Young radio galaxies (YRGs) provide an ideal laboratory to explore the connection between accretion disk and radio jet thanks to their recent jet formation. We investigate the relationship between the emission-line properties, the black hole accretio n rate, and the radio properties using a sample of 34 low-redshift (z < 0.4) YRGs. We classify YRGs as high-excitation galaxies (HEGs) and low-excitation galaxies (LEGs) based on the flux ratio of high-ionization to low-ionization emission lines. Using the H{alpha} luminosities as a proxy of accretion rate, we find that HEGs in YRGs have sim1 dex higher Eddington ratios than LEGs in YRGs, suggesting that HEGs have higher mass accretion rate or higher radiative efficiency than LEGs. In agreement with previous studies, we find that the luminosities of emission lines, in particular H{alpha}, are correlated with radio core luminosity, suggesting that accretion and young radio activities are fundamentally connected.
We built a catalog of 122 FR~II radio galaxies, called FRII{sl{CAT}}, selected from a published sample obtained by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with redshift $leq 0.15$, an edge-brightene d radio morphology, and those with at least one of the emission peaks located at radius $r$ larger than 30 kpc from the center of the host. The radio luminosity at 1.4 GHz of the FRII sources covers the range $L_{1.4} sim 10^{39.5} - 10^{42.5}$ $ergs$. The FRII catalog has 90% of low and 10% of high excitation galaxies (LEGs and HEGs), respectively. The properties of these two classes are significantly different. The FRII{sl{CAT}} LEGs are mostly luminous ($-20 gtrsim M_r gtrsim -24$), red early-type galaxies with black hole masses in the range $10^8 lesssim M_{rm BH} lesssim 10^9 M_odot$; they are essentially indistinguishable from the FR~Is belonging to the FRI{sl{CAT}}. The HEG FR~IIs are associated with optically bluer and mid-IR redder hosts than the LEG FR~IIs and to galaxies and black holes that are smaller, on average, by a factor $sim$2. FR~IIs have a factor $sim$ 3 higher average radio luminosity than FR~Is. Nonetheless, most ($sim 90$ %) of the selected FR~IIs have a radio power that is lower, by as much as a factor of $sim$100, than the transition value between FR~Is and FR~IIs found in the 3C sample. The correspondence between the morphological classification of FR~I and FR~II and the separation in radio power disappears when including sources selected at low radio flux thresholds, which is in line with previous results. In conclusion, a radio source produced by a low power jet can be edge brightened or edge darkened, and the outcome is not related to differences in the optical properties of the host galaxy.
Current wide-area radio surveys are dominated by active galactic nuclei, yet many of these sources have no identified optical counterparts. Here we investigate whether one can constrain the nature and properties of these sources, using Fanaroff-Riley type II (FRII) radio galaxies as probes. These sources are easy to identify since the angular separation of their lobes remains almost constant at some tens of arcseconds for z>1. Using a simple algorithm applied to the FIRST survey, we obtain the largest FRII sample to date, containing over ten thousand double-lobed sources. A subset of 459 sources is matched to SDSS quasars. This sample yields a statistically meaningful description of the fraction of quasars with lobes as a function of redshift and luminosity. This relation is combined with the bolometric quasar luminosity function, as derived from surveys at IR to hard X-ray frequencies, and a disc-lobe correlation to obtain a robust prediction for the density of FRIIs on the radio sky. We find that the observed density can be explained by the population of known quasars, implying that the majority of powerful jets originate from a radiatively efficient accretion flow with a linear jet-disc coupling. Finally, we show that high-redshift jets are more often quenched within 100 kpc, suggesting a higher efficiency of jet-induced feedback into their host galaxies.
We study a sample of 44 low-luminosity radio-loud AGN, which represent a range of nuclear radio-power spanning 5 orders of magnitude, to unveil the accretion mechanism in these galaxies. We estimate the accretion rate of gas associated with their hot coronae by analyzing archival Chandra data, to derive the deprojected density and temperature profiles in a spherical approximation. Measuring the jet power from the nuclear radio-luminosity, we find that the accretion power correlates linearly with the jet power, with an efficiency of conversion from rest mass into jet power of ~0.012. These results strengthen and extend the validity of the results obtained by Allen and collaborators for 9 radio galaxies, indicating that hot gas accretion is the dominant process in FR I radio galaxies across their full range of radio-luminosity. We find that the different levels of nuclear activity are driven by global differences in the structure of the galactic hot coronae. A linear relation links the jet power with the host X-ray surface brightness. This implies that a substantial change in the jet power must be accompanied by a global change in its ISM properties, driven for example by a major merger. This correlation provides a simple widely applicable method to estimate the jet-power of a given object by observing the intensity of its host X-ray emission. To maintain the mass flow in the jet, the fraction of gas that crosses the Bondi radius reaching the accretion disk must be > 0.002. This implies that the radiative efficiency of the disk must be < 0.005, an indication that accretion in these objects occurs not only at a lower rate, but also at lower efficiency than in standard accretion disks.
120 - Paul Nulsen 2009
Outbursts from active galactic nuclei (AGN) affect the hot atmospheres of isolated giant elliptical galaxies (gEs), as well as those in groups and clusters of galaxies. Chandra observations of a sample of nearby gEs show that the average power of AGN outbursts is sufficient to stop their hot atmospheres from cooling and forming stars, consistent with radio mode feedback models. The outbursts are intermittent, with duty cycles that increases with size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا