ﻻ يوجد ملخص باللغة العربية
The arrangement of plasmonic nanoparticles in a non-symmetrical environment can feature the far-field and/or near-field interactions depending on the distance between the objects. In this work, we study the hybridization of three intrinsic plasmonic modes (dipolar, quadrupolar and hexapolar modes) sustained by one elliptical aluminium nanocylinder, as well as behavior of the hybridized modes when the nanoparticles are organized in array or when the refractive index of the surrounding medium is changed. The position and the intensity of these hybridized modes were shown to be affected by the near-field and far-field interactions between the nanoparticles. In this work, two hybridized modes were tuned in the UV spectral range to spectrally coincide with the intrinsic interband excitation and emission bands of ZnO nanocrystals. The refractive index of the ZnO nanocrystals layer influences the positions of the plasmonic modes and increases the role of the superstrate medium, which in turn results in the appearance of two separate modes in the small spectral region. Hence, the enhancement of ZnO nanocrystals photoluminescence benefits from the simultaneous excitation and emission enhancements.
We have theoretically demonstrated Rabi-like splitting and self-referenced refractive index sensing in hybrid plasmonic-1D photonic crystal structures. The coupling between Tamm plasmon and cavity photon modes are tuned by incorporating a low refract
Sub-wavelength diffractive optics, commonly known as metasurfaces, have recently garnered significant attention for their ability to create ultra-thin flat lenses with extremely short focal lengths. Several materials with different refractive indices
Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discus
It is interesting to observe that all optical materials with a positive refractive index have a value of index that is of order unity. Surprisingly, though, a deep understanding of the mechanisms that lead to this universal behavior seems to be lacki
Hyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it