ﻻ يوجد ملخص باللغة العربية
We study Poincar{e} inequalities and long-time behavior for diffusion processes on R^n under a variable curvature lower bound, in the sense of Bakry-Emery. We derive various estimates on the rate of convergence to equilibrium in L^1 optimal transport distance, as well as bounds on the constant in the Poincar{e} inequality in several situations of interest, including some where curvature may be negative. In particular, we prove a self-improvement of the Bakry-Emery estimate for Poincar{e} inequalities when curvature is positive but not constant.
If Poincar{e} inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkovs argument and super-Poincar{e} inequalities
For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.
We demonstrate lower bounds for the eigenvalues of compact Bakry-Emery manifolds with and without boundary. The lower bounds for the first eigenvalue rely on a generalised maximum principle which allows gradient estimates in the Riemannian setting to
Following the recently obtained complete classification of quantum-deformed $mathfrak{o}(4)$, $mathfrak{o}(3,1)$ and $mathfrak{o}(2,2)$ algebras, characterized by classical $r$-matrices, we study their inhomogeneous $D = 3$ quantum IW contractions (i
For any bounded domain $Omega$ in $mathbb C^m,$ let ${mathrm B}_1(Omega)$ denote the Cowen-Douglas class of commuting $m$-tuples of bounded linear operators. For an $m$-tuple $boldsymbol T$ in the Cowen-Douglas class ${mathrm B}_1(Omega),$ let $N_{bo