ﻻ يوجد ملخص باللغة العربية
The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibility in the Eulerian variable description by a generalization of Diracs constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Diracs method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give dynamics of infinite-dimensional geodesic flow on the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Because Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.
Inspired by an approach proposed previously for the incompressible Navier-Stokes (NS) equations, we present a general framework for the a posteriori analysis of the equations of incompressible magnetohydrodynamics (MHD) on a torus of arbitrary dimens
We review the role of dual pairs in mechanics and use them to derive particle-like solutions to regularized incompressible fluid systems. In our case we have a dual pair resulting from the action of diffeomorphisms on point particles (essentially by
We demonstrate that, for the case of quasi-equipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics alpha-model (LAMHD) reproduces well both the large-scale and small-scale properties of turbulent flows;
Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found
We show that the matter Lagrangian of an ideal fluid equals (up to a sign -depending on its definition and on the chosen signature of the metric) the total energy density of the fluid, i.e. rest energy density plus internal energy density.