ﻻ يوجد ملخص باللغة العربية
The response of a SERF atomic magnetometer to a repetitive short-pulsed pump was investigated. Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained. This is a type of synchronization phenomenon. Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented. In the later, one species is pumped while the probe is on the other specie polarized by spin exchange. The effect of spin destruction, spin exchange and collisions are studied in order to account for the width of the resonances. Quantum calculations of a three levels $Lambda$ model for this phenomenon exhibit a dip at the resonance frequency in the absorption spectrum for both cases of pulsed and CW pump modes and an evidence for EIT.
We propose and numerically validate an all-optical scheme to generate optical pulse trains with varying temporal pulse-to-pulse delay and pulse duration. Applying a temporal sinusoidal phase modulation followed by a shaping of the spectral phase enab
We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object. This configuration satisfies standard requirements in typical applications, from security screening to
Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution to the total systematic unce
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interf
We report the detection of high-contrast and narrow Coherent Population Trapping (CPT) Ramsey fringes in a Cs vapor cell using a simple-architecture laser system. The latter allows the combination of push-pull optical pumping (PPOP) and a temporal Ra