ترغب بنشر مسار تعليمي؟ اضغط هنا

Expressing Objects just like Words: Recurrent Visual Embedding for Image-Text Matching

166   0   0.0 ( 0 )
 نشر من قبل Tianlang Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing image-text matching approaches typically infer the similarity of an image-text pair by capturing and aggregating the affinities between the text and each independent object of the image. However, they ignore the connections between the objects that are semantically related. These objects may collectively determine whether the image corresponds to a text or not. To address this problem, we propose a Dual Path Recurrent Neural Network (DP-RNN) which processes images and sentences symmetrically by recurrent neural networks (RNN). In particular, given an input image-text pair, our model reorders the image objects based on the positions of their most related words in the text. In the same way as extracting the hidden features from word embeddings, the model leverages RNN to extract high-level object features from the reordered object inputs. We validate that the high-level object features contain useful joint information of semantically related objects, which benefit the retrieval task. To compute the image-text similarity, we incorporate a Multi-attention Cross Matching Model into DP-RNN. It aggregates the affinity between objects and words with cross-modality guided attention and self-attention. Our model achieves the state-of-the-art performance on Flickr30K dataset and competitive performance on MS-COCO dataset. Extensive experiments demonstrate the effectiveness of our model.



قيم البحث

اقرأ أيضاً

128 - Kunpeng Li , Yulun Zhang , Kai Li 2019
Image-text matching has been a hot research topic bridging the vision and language areas. It remains challenging because the current representation of image usually lacks global semantic concepts as in its corresponding text caption. To address this issue, we propose a simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene. Specifically, we first build up connections between image regions and perform reasoning with Graph Convolutional Networks to generate features with semantic relationships. Then, we propose to use the gate and memory mechanism to perform global semantic reasoning on these relationship-enhanced features, select the discriminative information and gradually generate the representation for the whole scene. Experiments validate that our method achieves a new state-of-the-art for the image-text matching on MS-COCO and Flickr30K datasets. It outperforms the current best method by 6.8% relatively for image retrieval and 4.8% relatively for caption retrieval on MS-COCO (Recall@1 using 1K test set). On Flickr30K, our model improves image retrieval by 12.6% relatively and caption retrieval by 5.8% relatively (Recall@1). Our code is available at https://github.com/KunpengLi1994/VSRN.
134 - Chuan Tang , Xi Yang , Bojian Wu 2021
It is important to learn joint embedding for 3D shapes and text in different shape understanding tasks, such as shape-text matching, retrieval, and shape captioning. Current multi-view based methods learn a mapping from multiple rendered views to tex t. However, these methods can not analyze 3D shapes well due to the self-occlusion and limitation of learning manifolds. To resolve this issue, we propose a method to learn joint embedding of point clouds and text by matching parts from shapes to words from sentences in a common space. Specifically, we first learn segmentation prior to segment point clouds into parts. Then, we map parts and words into an optimized space, where the parts and words can be matched with each other. In the optimized space, we represent a part by aggregating features of all points within the part, while representing each word with its context information, where we train our network to minimize the triplet ranking loss. Moreover, we also introduce cross-modal attention to capture the relationship of part-word in this matching procedure, which enhances joint embedding learning. Our experimental results outperform the state-of-the-art in multi-modal retrieval under the widely used benchmark.
Cross-modal attention mechanisms have been widely applied to the image-text matching task and have achieved remarkable improvements thanks to its capability of learning fine-grained relevance across different modalities. However, the cross-modal atte ntion models of existing methods could be sub-optimal and inaccurate because there is no direct supervision provided during the training process. In this work, we propose two novel training strategies, namely Contrastive Content Re-sourcing (CCR) and Contrastive Content Swapping (CCS) constraints, to address such limitations. These constraints supervise the training of cross-modal attention models in a contrastive learning manner without requiring explicit attention annotations. They are plug-in training strategies and can be easily integrated into existing cross-modal attention models. Additionally, we introduce three metrics including Attention Precision, Recall, and F1-Score to quantitatively measure the quality of learned attention models. We evaluate the proposed constraints by incorporating them into four state-of-the-art cross-modal attention-based image-text matching models. Experimental results on both Flickr30k and MS-COCO datasets demonstrate that integrating these constraints improves the model performance in terms of both retrieval performance and attention metrics.
Enabling bi-directional retrieval of images and texts is important for understanding the correspondence between vision and language. Existing methods leverage the attention mechanism to explore such correspondence in a fine-grained manner. However, m ost of them consider all semantics equally and thus align them uniformly, regardless of their diverse complexities. In fact, semantics are diverse (i.e. involving different kinds of semantic concepts), and humans usually follow a latent structure to combine them into understandable languages. It may be difficult to optimally capture such sophisticated correspondences in existing methods. In this paper, to address such a deficiency, we propose an Iterative Matching with Recurrent Attention Memory (IMRAM) method, in which correspondences between images and texts are captured with multiple steps of alignments. Specifically, we introduce an iterative matching scheme to explore such fine-grained correspondence progressively. A memory distillation unit is used to refine alignment knowledge from early steps to later ones. Experiment results on three benchmark datasets, i.e. Flickr8K, Flickr30K, and MS COCO, show that our IMRAM achieves state-of-the-art performance, well demonstrating its effectiveness. Experiments on a practical business advertisement dataset, named Ads{}, further validates the applicability of our method in practical scenarios.
Image-text matching has received growing interest since it bridges vision and language. The key challenge lies in how to learn correspondence between image and text. Existing works learn coarse correspondence based on object co-occurrence statistics, while failing to learn fine-grained phrase correspondence. In this paper, we present a novel Graph Structured Matching Network (GSMN) to learn fine-grained correspondence. The GSMN explicitly models object, relation and attribute as a structured phrase, which not only allows to learn correspondence of object, relation and attribute separately, but also benefits to learn fine-grained correspondence of structured phrase. This is achieved by node-level matching and structure-level matching. The node-level matching associates each node with its relevant nodes from another modality, where the node can be object, relation or attribute. The associated nodes then jointly infer fine-grained correspondence by fusing neighborhood associations at structure-level matching. Comprehensive experiments show that GSMN outperforms state-of-the-art methods on benchmarks, with relative Recall@1 improvements of nearly 7% and 2% on Flickr30K and MSCOCO, respectively. Code will be released at: https://github.com/CrossmodalGroup/GSMN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا