ﻻ يوجد ملخص باللغة العربية
We present an extended zero-field muon spin relaxation (ZF-$mu$SR) study of overdoped Bi$_{2+x}$Sr$_{2-x}$CaCu$_2$O$_{8+delta}$ (Bi2212) single crystals, intended to elucidate the origin of weak quasistatic magnetism previously detected by $mu$SR in the superconducting and normal states of optimally-doped and overdoped samples. New results on heavily-overdoped single crystals show a similar monotonically decreasing ZF-$mu$SR relaxation rate with increasing temperature that persists above the pseudogap (PG) temperature $T^*$ and does not evolve with hole doping ($p$). Additional measurements using an ultra-low background apparatus confirm that this behavior is an intrinsic property of Bi2212, which cannot be due to magnetic order associated with the PG phase. Instead we show that the temperature-dependent relaxation rate is most likely caused by structural changes that modify the contribution of the nuclear dipole fields to the ZF-$mu$SR signal. Our results for Bi2212 emphasize the importance of not assuming the nuclear-dipole field contribution is independent of temperature in ZF-$mu$SR studies of high-temperature (high-$T_c$) cuprate superconductors, and do not support a recent $mu$SR study of YBa$_2$Cu$_3$O$_{6+x}$ that claims to detect magnetic order in the PG phase.
We report muon spin relaxation ($mu$SR) measurements of optimally-doped and overdoped Bi$_{2+x}$Sr$_{2-x}$CaCu$_2$O$_{8+delta}$ (Bi2212) single crystals that reveal the presence of a weak temperature-dependent quasi-static internal magnetic field of
Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be
The quantum condensate of Cooper-pairs forming a superconductor was originally conceived to be translationally invariant. In theory, however, pairs can exist with finite momentum $Q$ and thereby generate states with spatially modulating Cooper-pair d
We report a fine tuned doping study of strongly overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ single crystals using electronic Raman scattering. Combined with theoretical calculations, we show that the doping, at which the normal state pseudogap closes