ﻻ يوجد ملخص باللغة العربية
The interaction between a YSO stellar magnetic field and its protostellar disc can result in stellar accretional flows and outflows from the inner disc rim. Gas flows with a velocity component perpendicular to disc midplane subject particles to centrifugal acceleration away from the protostar, resulting in particles being catapulted across the face of the disc. The ejected material can produce a dust fan, which may be dense enough to mimic the appearance of a puffed-up inner disc rim. We derive analytic equations for the time dependent disc toroidal field, the disc magnetic twist, the size of the stable toroidal disc region, the jet speed and the disc region of maximal jet flow speed. We show how the observed infrared variability of the pre-transition disc system LRLL~31 can be modelled by a dust ejecta fan from the inner-most regions of the disc whose height is partially dependent on the jet flow speed. The greater the jet flow speed, the higher is the potential dust fan scale height. An increase in mass accretion onto the star tends to increase the height and optical depth of the dust ejection fan, increasing the amount of 1--8~$mu$m radiation. The subsequent shadow reduces the amount of light falling on the outer disc and decreases the 8-- 40~$mu$m radiation. A decrease in the accretion rate reverses this scenario, thereby producing the observed see-saw infrared variability.
Protostellar flares are rapid magnetic energy release events associated with formation of hot plasma in protostars. In the previous models of protostellar flares, the interaction between a protostellar magnetosphere with the surrounding disk plays cr
The innermost astronomical unit in protoplanetary disks is a key region for stellar and planet formation, as exoplanet searches have shown a large occurrence of close-in planets that are located within the first au around their host star. We aim to r
Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus
The presence of stable, compact circumbinary discs of gas and dust around post-asymptotic giant branch (post-AGB) binary systems has been well established. We focus on one such system: IRAS 08544-4431. We present an interferometric multi-wavelength a
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB