ﻻ يوجد ملخص باللغة العربية
We construct black hole geometries in AdS$_3$ with non-trivial values of KdV charges. The black holes are holographically dual to quantum KdV Generalized Gibbs Ensemble in 2d CFT. They satisfy thermodynamic identity and thus are saddle point configurations of the Euclidean gravity path integral. We discuss holographic calculation of the KdV generalized partition function and show that for a certain value of chemical potentials new geometries, not the conventional BTZ ones, are the leading saddles.
We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we u
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the sol
The growth of the size of operators is an important diagnostic of quantum chaos. In arXiv:1802.01198 [hep-th] it was conjectured that the holographic dual of the size is proportional to the average radial component of the momentum of the particle cre
We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tens
The holographic quantum entanglement entropy for an infinite strip region of the boundary for the field theory dual to charged black holes in ${cal A}dS_{3+1}$ is investigated. In this framework we elucidate the low and high temperature behavior of t