ﻻ يوجد ملخص باللغة العربية
There is a rich and growing literature on producing local contrastive/counterfactual explanations for black-box models (e.g. neural networks). In these methods, for an input, an explanation is in the form of a contrast point differing in very few features from the original input and lying in a different class. Other works try to build globally interpretable models like decision trees and rule lists based on the data using actual labels or based on the black-box models predictions. Although these interpretable global models can be useful, they may not be consistent with local explanations from a specific black-box of choice. In this work, we explore the question: Can we produce a transparent global model that is simultaneously accurate and consistent with the local (contrastive) explanations of the black-box model? We introduce a natural local consistency metric that quantifies if the local explanations and predictions of the black-box model are also consistent with the proxy global transparent model. Based on a key insight we propose a novel method where we create custom boolean features from sparse local contrastive explanations of the black-box model and then train a globally transparent model on just these, and showcase empirically that such models have higher local consistency compared with other known strategies, while still being close in performance to models that are trained with access to the original data.
Deep neural nets typically perform end-to-end backpropagation to learn the weights, a procedure that creates synchronization constraints in the weight update step across layers and is not biologically plausible. Recent advances in unsupervised contra
With advances in reinforcement learning (RL), agents are now being developed in high-stakes application domains such as healthcare and transportation. Explaining the behavior of these agents is challenging, as the environments in which they act have
Contrastive learning has delivered impressive results in many audio-visual representation learning scenarios. However, existing approaches optimize for learning either textit{global} representations useful for tasks such as classification, or textit{
Contrastive learning has revolutionized self-supervised image representation learning field, and recently been adapted to video domain. One of the greatest advantages of contrastive learning is that it allows us to flexibly define powerful loss objec
In this work, we address the challenging task of few-shot segmentation. Previous few-shot segmentation methods mainly employ the information of support images as guidance for query image segmentation. Although some works propose to build cross-refere