ﻻ يوجد ملخص باللغة العربية
Liquid metals at extreme pressures and temperatures are widely interested in the high-pressure community. Based on density functional theory molecular dynamics, we conduct first-principles investigations on the equation of state (EOS) and structures of four metals (Cu, Fe, Pb, and Sn) at 1.5--5 megabar conditions and 5$times10^3$--4$times10^4$ K. Our first-principles EOS data enable evaluating the performance of four EOS models in predicting Hugoniot densities and temperatures of the four systems. We find the melting temperature of Cu is 1000--2000 K higher and shows a similar Clapeyron slope, in comparison to those of Fe. Our structure, coordination number, and diffusivity analysis indicates all the four liquid metals form similar simple close-packed structures. Our results set theoretical benchmarks for EOS development and structures of metals in their liquid states and under dynamic compression.
We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard
The theoretical understanding of plasmon behavior is crucial for an accurate interpretation of inelastic scattering diagnostics in many experiments. We highlight the utility of linear-response time-dependent density functional theory (LR-TDDFT) as a
Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications, however progress to
A tetragonal phase is predicted for Hf2O3 and Zr2O3 using density functional theory. Starting from atomic and unit cell relaxations of substoichiometric monoclinic HfO2 and ZrO2, such tetragonal structures are only reached at zero temperature by intr
Finite-temperature Kohn--Sham density-functional theory (KS-DFT) is a widely-used method in warm dense matter (WDM) simulations and diagnostics. Unfortunately, full KS-DFT-molecular dynamics models scale unfavourably with temperature and there remain