We demonstrate enhancement of X-ray excited optical luminescence in a 100-micron-thick diamond plate by introduction of defect states via electron beam irradiation and subsequent high-temperature annealing. The resulting X-ray transmission-mode scintillator features a linear response to incident photon flux in the range of 7.6$times$10$^8$ to 1.26$times10^{12}$ photons/s/mm$^2$ for hard X-rays (15.9 keV) using exposure times from 0.01 to 5 s. These characteristics enable a real-time transmission-mode imaging of X-ray photon flux density without disruption of X-ray instrument operation.
Accurate readout of low-power optical higher-order spatial modes is of increasing importance to the precision metrology community. Mode sensors are used to prevent mode mismatches from degrading quantum and thermal noise mitigation strategies. Direct
mode analysis sensors (MODAN) are a promising technology for real-time monitoring of arbitrary higher-order modes. We demonstrate MODAN with photo-diode readout to mitigate the typically low dynamic range of CCDs. We look for asymmetries in the response our sensor to break degeneracies in the relative alignment of the MODAN and photo-diode and consequently improve the dynamic range of the mode sensor. We provide a tolerance analysis and show methodology that can be applied for sensors beyond first-order spatial modes.
We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel de
tector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition (DAQ) system, and preliminary results from experiments with 80 to 200 keV electron beams.
To solve the discharge of the standard Bulk Micromegas and GEM detector, the GEM-Micromegas detector was developed in Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on
the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to reduce the effect of the discharge significantly. In the paper, the performance of detector in X-ray beam was studied at 1W2B laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. It indicated that the GEM-Micromegas detector had the energy response capability in all the energy range and it could work better than the standard Bulk-Micromegas.
The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic x-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard x-ray range. These two techniques offer powerful, complementary methods of characterizatio
n of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, we address the beamline performances through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.
Multichannel imaging -- the ability to acquire images of an object through more than one imaging mode simultaneously -- has opened interesting new perspectives in areas ranging from astronomy to medicine. Visible optics and magnetic resonance imaging
(MRI) offer complementary advantages of resolution, speed and depth of penetration, and as such would be attractive in combination. In this paper, we take first steps towards marrying together optical and MR imaging in a class of biocompatible particulate materials constructed out of diamond. The particles are endowed with a high density of quantum defects (Nitrogen Vacancy centers) that under optical excitation fluoresce brightly in the visible, but also concurrently electron spin polarize. This allows the hyperpolarization of lattice 13C nuclei to make the particles over three-orders of magnitude brighter than in conventional MRI. Dual-mode optical and MR imaging permits immediate access to improvements in resolution and signal-to-noise especially in scattering environments. We highlight additional benefits in background-free imaging, demonstrating lock-in suppression by factors of 2 and 5 in optical and MR domains respectively. Ultimate limits could approach as much as two orders of magnitude in each domain. Finally, leveraging the ability of optical and MR imaging to simultaneously probe Fourier-reciprocal domains (real and k-space), we elucidate the ability to employ hybrid sub-sampling in both conjugate spaces to vastly accelerate dual-image acquisition, by as much as two orders of magnitude in practically relevant sparse-imaging scenarios. This is accompanied by a reduction in optical power by the same factor. Our work suggests interesting possibilities for the simultaneous optical and low-field MR imaging of targeted diamond nanoparticles.
Stanislav Stoupin
,Sergey Antipov
,
.
(2020)
.
"High-dynamic-range transmission-mode detection of synchrotron radiation using X-ray excited optical luminescence in diamond"
.
Stanislav Stoupin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا