ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent and Reconfigurable Architecture for KL Divergence Based Online Machine Learning Algorithm

66   0   0.0 ( 0 )
 نشر من قبل Sumit Darak Dr
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Online machine learning (OML) algorithms do not need any training phase and can be deployed directly in an unknown environment. OML includes multi-armed bandit (MAB) algorithms that can identify the best arm among several arms by achieving a balance between exploration of all arms and exploitation of optimal arm. The Kullback-Leibler divergence based upper confidence bound (KLUCB) is the state-of-the-art MAB algorithm that optimizes exploration-exploitation trade-off but it is complex due to underlining optimization routine. This limits its usefulness for robotics and radio applications which demand integration of KLUCB with the PHY on the system on chip (SoC). In this paper, we efficiently map the KLUCB algorithm on SoC by realizing optimization routine via alternative synthesizable computation without compromising on the performance. The proposed architecture is dynamically reconfigurable such that the number of arms, as well as type of algorithm, can be changed on-the-fly. Specifically, after initial learning, on-the-fly switch to light-weight UCB offers around 10-factor improvement in latency and throughput. Since learning duration depends on the unknown arm statistics, we offer intelligence embedded in architecture to decide the switching instant. We validate the functional correctness and usefulness of the proposed architecture via a realistic wireless application and detailed complexity analysis demonstrates its feasibility in realizing intelligent radios.



قيم البحث

اقرأ أيضاً

Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS, such as the alternating optimization (AO) approaches, require a high computational complexity, especially for multiple-input-multiple-output (MIMO) systems. To overcome this challenge, we propose a low-complexity unsupervised learning scheme, referred to as learning-phase-shift neural network (LPSNet), to efficiently find the solution to the spectral efficiency maximization problem in RIS-aided MIMO systems. In particular, the proposed LPSNet has an optimized input structure and requires a small number of layers and nodes to produce efficient phase shifts for the RIS. Simulation results for a 16x2 MIMO system assisted by an RIS with 40 elements show that the LPSNet achieves 97.25% of the SE provided by the AO counterpart with more than a 95% reduction in complexity.
Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals th at impinge upon an RIS are often mixed with interfering signals, which are usually dynamic and unknown. In particular, the received signal-to-interference-plus-noise ratio (SINR) may be degraded by the signals reflected from the RISs that originate from non-intended users. To tackle this issue, we introduce the concept of intelligent spectrum learning (ISL), which uses an appropriately trained convolutional neural network (CNN) at the RIS controller to help the RISs infer the interfering signals directly from the incident signals. By capitalizing on the ISL, a distributed control algorithm is proposed to maximize the received SINR by dynamically configuring the active/inactive binary status of the RIS elements. Simulation results validate the performance improvement offered by deep learning and demonstrate the superiority of the proposed ISL-aided approach.
Intelligent reflecting surface (IRS) has been recently employed to reshape the wireless channels by controlling individual scattering elements phase shifts, namely, passive beamforming. Due to the large size of scattering elements, the passive beamfo rming is typically challenged by the high computational complexity and inexact channel information. In this article, we focus on machine learning (ML) approaches for performance maximization in IRS-assisted wireless networks. In general, ML approaches provide enhanced flexibility and robustness against uncertain information and imprecise modeling. Practical challenges still remain mainly due to the demand for a large dataset in offline training and slow convergence in online learning. These observations motivate us to design a novel optimization-driven ML framework for IRS-assisted wireless networks, which takes both advantages of the efficiency in model-based optimization and the robustness in model-free ML approaches. By splitting the decision variables into two parts, one part is obtained by the outer-loop ML approach, while the other part is optimized efficiently by solving an approximate problem. Numerical results verify that the optimization-driven ML approach can improve both the convergence and the reward performance compared to conventional model-free learning approaches.
Reconfigurable intelligent surfaces (RISs) are an emerging technology for future wireless communication. The vast majority of recent research on RIS has focused on system level optimizations. However, developing straightforward and tractable electrom agnetic models that are suitable for RIS aided communication modeling remains an open issue. In this paper, we address this issue and derive communication models by using rigorous scattering parameter network analysis. We also propose new RIS architectures based on group and fully connected reconfigurable impedance networks that can adjust not only the phases but also the magnitudes of the impinging waves, which are more general and more efficient than conventional single connected reconfigurable impedance network that only adjusts the phases of the impinging waves. In addition, the scaling law of the received signal power of an RIS aided system with reconfigurable impedance networks is also derived. Compared with the single connected reconfigurable impedance network, our group and fully connected reconfigurable impedance network can increase the received signal power by up to 62%, or maintain the same received signal power with a number of RIS elements reduced by up to 21%. We also investigate the proposed architecture in deployments with distance-dependent pathloss and Rician fading channel, and show that the proposed group and fully connected reconfigurable impedance networks outperform the single connected case by up to 34% and 48%, respectively.
In the sixth-generation (6G) era, emerging large-scale computing based applications (for example processing enormous amounts of images in real-time in autonomous driving) tend to lead to excessive energy consumption for the end users, whose devices a re usually energy-constrained. In this context, energy-efficiency becomes a critical challenge to be solved for harnessing these promising applications to realize green 6G networks. As a remedy, reconfigurable intelligent surfaces (RIS) have been proposed for improving the energy efficiency by beneficially reconfiguring the wireless propagation environment. In conventional RIS solutions, however, the received signal-to-interference-plus-noise ratio (SINR) sometimes may even become degraded. This is because the signals impinging upon an RIS are typically contaminated by interfering signals which are usually dynamic and unknown. To address this issue, `learning the properties of the surrounding spectral environment is a promising solution, motivating the convergence of artificial intelligence and spectrum sensing, termed here as spectrum learning (SL). Inspired by this, we develop an SL-aided RIS framework for intelligently exploiting the inherent characteristics of the radio frequency (RF) spectrum for green 6G networks. Given the proposed framework, the RIS controller becomes capable of intelligently `{think-and-decide} whether to reflect or not the incident signals. Therefore, the received SINR can be improved by dynamically configuring the binary ON-OFF status of the RIS elements. The energy-efficiency benefits attained are validated with the aid of a specific case study. Finally, we conclude with a list of promising future research directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا