ﻻ يوجد ملخص باللغة العربية
Online machine learning (OML) algorithms do not need any training phase and can be deployed directly in an unknown environment. OML includes multi-armed bandit (MAB) algorithms that can identify the best arm among several arms by achieving a balance between exploration of all arms and exploitation of optimal arm. The Kullback-Leibler divergence based upper confidence bound (KLUCB) is the state-of-the-art MAB algorithm that optimizes exploration-exploitation trade-off but it is complex due to underlining optimization routine. This limits its usefulness for robotics and radio applications which demand integration of KLUCB with the PHY on the system on chip (SoC). In this paper, we efficiently map the KLUCB algorithm on SoC by realizing optimization routine via alternative synthesizable computation without compromising on the performance. The proposed architecture is dynamically reconfigurable such that the number of arms, as well as type of algorithm, can be changed on-the-fly. Specifically, after initial learning, on-the-fly switch to light-weight UCB offers around 10-factor improvement in latency and throughput. Since learning duration depends on the unknown arm statistics, we offer intelligence embedded in architecture to decide the switching instant. We validate the functional correctness and usefulness of the proposed architecture via a realistic wireless application and detailed complexity analysis demonstrates its feasibility in realizing intelligent radios.
Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS,
Reconfigurable intelligent surface (RIS) has become a promising technology for enhancing the reliability of wireless communications, which is capable of reflecting the desired signals through appropriate phase shifts. However, the intended signals th
Intelligent reflecting surface (IRS) has been recently employed to reshape the wireless channels by controlling individual scattering elements phase shifts, namely, passive beamforming. Due to the large size of scattering elements, the passive beamfo
Reconfigurable intelligent surfaces (RISs) are an emerging technology for future wireless communication. The vast majority of recent research on RIS has focused on system level optimizations. However, developing straightforward and tractable electrom
In the sixth-generation (6G) era, emerging large-scale computing based applications (for example processing enormous amounts of images in real-time in autonomous driving) tend to lead to excessive energy consumption for the end users, whose devices a