ترغب بنشر مسار تعليمي؟ اضغط هنا

The quasar main sequence and its potential for cosmology

69   0   0.0 ( 0 )
 نشر من قبل Paola Marziani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main sequence offers a method for the systematization of quasar spectral properties. Extreme FeII emitters (or extreme Population A, xA) are believed to be sources accreting matter at very high rates. They are easily identifiable along the quasar main sequence, in large spectroscopic surveys over a broad redshift range. The very high accretion rate makes it possible that massive black holes hosted in xA quasars radiate at a stable, extreme luminosity-to-mass ratio. After reviewing the basic interpretation of the main sequence, we report on the possibility of identifying virial broadening estimators from low-ionization line widths, and provide evidence of the conceptual validity of redshift-independent luminosities based on virial broadening for a known luminosity-to-mass ratio.



قيم البحث

اقرأ أيضاً

69 - Mouyuan Sun 2018
We explore the evolution of the time variability (in the optical $g$-band and on timescales of weeks to years) of SDSS Stripe 82 quasars along the quasar main sequence. A parent sample of $1004$ quasars within $0.5leq z leq 0.89$ are used for our sta tistical studies, we then make subsamples from our parent sample: a subsample of $246$ quasars with similar luminosities, and a subsample of $399$ quasars with similar Rfe (i.e., the ratio of the equivalent width of FeII within $4435$--$4685 mathrm{AA}$ to that of Hbeta). We find the variability amplitude decreases with luminosity ($L_{mathrm{bol}}$). The anti-correlation between the variability amplitude and Rfe is weak but statistically significant. The characteristic timescale, $tau$, correlates mostly with quasar luminosity, its dependence on Rfe is statistically insignificant. After controlling luminosity and Rfe, the high- and low-FWHM samples have similar structure functions. These results support the framework that Rfe is governed by Eddington ratio and FWHM of Hbeta is mostly determined by orientation. We then provide new empirical relations between variability parameters and quasar properties (i.e., luminosity and Rfe). Our new relations are consistent with the scenario that quasar variability is driven by the thermal fluctuations in the accretion disk, $tau$ seems to correspond to the thermal timescale. From our new relations, we find the short-term variability is mostly sensitive to $L_{mathrm{bol}}$. Basing on this, we propose that quasar short-term (a few months) variability might be a new type of Standard Candle and can be adopted to probe cosmology.
Following the established view of the AGNs inner workings, an AGN is radio-loud (RL) if associated with relativistic ejections emitting a radio synchrotron spectrum (i.e., a jetted AGN). If large samples of optically-selected quasars are considered, AGNs are identified as RL if their Kellermanns radio loudness ratio RK > 10. Our aims are to characterize the optical properties of different classes based on radio-loudness within the quasar main sequence (MS) and to test whether the condition RK > 10 is sufficient for the identification of RL AGNs. A sample of 355 quasars was selected by cross-correlating the FIRST survey with the SDSS DR14 quasar catalog. We classified the optical spectra according to their spectral types along the quasars MS. For each spectral type, we distinguished compact and extended morphology, and three classes of radio-loudness: detected (specific flux ratio in the g band and at 1.4GHz, RK < 10, RD), intermediate (10 < RK < 70, RI), and radio loud (RK > 70). The analysis revealed systematic differences between RD, RI, and RL in each spectral type along the MS. We show that spectral bins that contain the extreme Population A sources have radio power compatible with emission by mechanisms ultimately due to star formation processes. RL sources of Population B are characteristically jetted. Their broad H-beta profiles can be interpreted as due to a binary broad-line region. We suggest that RL Population B sources should be preferential targets for the search of black hole binaries, and present a sample of binary black hole AGN candidates. The validity of the Kellermanns criterion may be dependent on the source location along the quasar MS. The consideration of the MS trends allowed to distinguish between sources whose radio emission mechanisms is jetted from the ones where the mechanism is likely to be fundamentally different.
We use X-ray Active Galactic Nuclei (AGN) observed by the Chandra X-ray Observatory within the 9.3 deg$^2$ Bo$rm ddot{o}$tes field of the NDWFS to study whether there is a correlation between X-ray luminosity (L$_X$) and star formation rate (SFR) of the host galaxy, at $rm 0.5<z<2.0$, with respect to the position of the galaxy to the main sequence (SFR$_{norm}$). About half of the sources in the X-ray sample have spectroscopic redshifts. We also construct a reference galaxy catalogue. For both datasets, we use photometric data from optical to the far infrared, compiled by the HELP project and apply spectral energy distribution (SED) fitting, using the X-CIGALE code. We exclude quiescent sources from both the X-ray and the reference samples. We also account for the mass completeness of our dataset, in different redshifts bins. Our analysis highlights the importance of studying the SFR-L$_X$ relation, in a uniform manner, taking into account the systematics and selection effects. Our results suggest that, in less massive galaxies ($rm log,[M_*(M_odot)] sim 11$), AGN enhances the SFR of the host galaxy by $sim 50%$ compared to non AGN systems. A flat relation is observed for the most massive galaxies. SFR$_{norm}$ does not evolve with redshift. The results, although tentative, are consistent with a scenario in which, in less massive systems, both AGN and star formation (SF) are fed by cold gas, supplied by a merger event. In more massive galaxies, the flat relation could be explained by a different SMBH fuelling mechanism that is decoupled from the star formation of the host galaxy (e.g. hot diffuse gas). Finally, we compare the host galaxy properties of X-ray absorbed and unabsorbed sources. Our results show no difference which suggests that X-ray absorption is not linked with the properties of the galaxy.
The analytic equilibrium model for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic tim e with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-sigma MS scatter to be ~ 0.2 - 0.25 dex over the stellar mass range 10^8 Mo to 10^11 Mo and a redshift range 0.5 < z < 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z > 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.
We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies ($M_{star}gtrsim10^{10}$ $h^{-1}$M$_{odot}$) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass ($M_{star}$) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and $M_star$, up to redshift $zsim6$. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts ($0.5lesssim zlesssim4$) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at $zgtrsim2$, selected here to have elevated sSFRs$>10times$ the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا