ﻻ يوجد ملخص باللغة العربية
Low-redshift strong-lensing galaxies can provide robust measurements of the stellar mass-to-light ratios in early-type galaxies (ETG), and hence constrain variations in the stellar initial mass function (IMF). At present, only a few such systems are known. Here, we report the first results from a blind search for gravitationally-lensed emission line sources behind 52 massive $z$ $<$ 0.07 ETGs with MUSE integral field spectroscopy. For 16 galaxies, new observations were acquired, whilst the other 36 were analysed from archival data. This project has previously yielded one confirmed galaxy-scale strong lens (J0403-0239) which we report in an earlier paper. J0403-0239 has since received follow-up observations, presented here, which indicate support for our earlier IMF results. Three cluster-scale, and hence dark-matter-dominated, lensing systems were also discovered (central galaxies of A4059, A2052 and AS555). For nine further galaxies, we detect a singly-imaged but closely-projected source within 6 arcsec (including one candidate with sources at three different redshifts); such cases can be exploited to derive upper limits on the IMF mass-excess factor, $alpha$. Combining the new lens and new upper limits, with the previously-discovered systems, we infer an average $langle alpha rangle$ = 1.06 $pm$ 0.08 (marginalised over the intrinsic scatter), which is inconsistent with a Salpeter-like IMF ($alpha$ = 1.55) at the 6$sigma$ level. We test the detection threshold in these short-exposure MUSE observations with the injection and recovery of simulated sources, and predict that one in twenty-five observations is expected to yield a new strong-lens system. Our observational results are consistent with this expected yield.
Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is pecu
We present the first data release (DR1) of the VST Early-type GAlaxy Survey (VEGAS). This is a deep multi-band (ugri) imaging survey, carried out with the ESO VLT Survey Telescope (VST). To date, using about 90% of the total observing time, VEGAS has
Nuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxys central gas reservoir, through merging of globular clusters (GCs), or
The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4 Mpc). The survey volume encompasses 69 galaxies in dive
Stellar metallicity gradients in the outer regions of galaxies are a critical tool for disentangling the contributions of in-situ and ex-situ formed stars. In the two-phase galaxy formation scenario, the initial gas collapse creates steep metallicity