ﻻ يوجد ملخص باللغة العربية
We report on the frozen-spin polarized hydrogen--deuteride (HD) targets for photoproduction experiments at SPring-8/LEPS. Pure HD gas with a small amount of ortho-H2 (~0.1%) was liquefied and solidified by liquid helium. The temperature of the produced solid HD was reduced to about 30 mK with a dilution refrigerator. A magnetic field (17 T) was applied to the HD to grow the polarization with the static method. After the aging of the HD at low temperatures in the presence of a high-magnetic field strength for 3 months, the polarization froze. Almost all ortho-H2 molecules were converted to para-H2 molecules that exhibited weak spin interactions with the HD. If the concentration of the ortho-H2 was reduced at the beginning of the aging process, the aging time can be shortened. We have developed a new nuclear magnetic resonance (NMR) system to measure the relaxation times (T1) of the 1H and 2H nuclei with two frequency sweeps at the respective frequencies of 726 and 111 MHz, and succeeded in the monitoring of the polarization build-up at decreasing temperatures from 600 to 30 mK at 17 T. This technique enables us to optimize the concentration of the ortho-H2 and to efficiently polarize the HD target within a shortened aging time.
A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear
The design, fabrication, operation, and performance of a helium-3/4 dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam run
We report the detection of interstellar hydrogen deuteride (HD) toward the supernova remnant IC443, and the tentative detection of HD toward the Herbig Haro objects HH54 and HH7 and the star forming region GGD37 (Cepheus A West). Our detections are b
We report on the observation of a previously unknown resonance at E=194.1+/-0.6 keV (lab) in the 17-O(p,alpha)14-N reaction, with a measured resonance strength omega_gamma(p,alpha)=1.6+/-0.2 meV. We studied in the same experiment the 17-O(p,gamma)18-
The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, $mu^- + p rightarrow n + u_mu$. The experimental approach was based on the