ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of Conditional Random Field Insert for UNet-based Zonal Prostate Segmentation on T2-Weighted MRI

88   0   0.0 ( 0 )
 نشر من قبل Peng Cao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: A conventional 2D UNet convolutional neural network (CNN) architecture may result in ill-defined boundaries in segmentation output. Several studies imposed stronger constraints on each level of UNet to improve the performance of 2D UNet, such as SegNet. In this study, we investigated 2D SegNet and a proposed conditional random field insert (CRFI) for zonal prostate segmentation from clinical T2-weighted MRI data. Methods: We introduced a new methodology that combines SegNet and CRFI to improve the accuracy and robustness of the segmentation. CRFI has feedback connections that encourage the data consistency at multiple levels of the feature pyramid. On the encoder side of the SegNet, the CRFI combines the input feature maps and convolution block output based on their spatial local similarity, like a trainable bilateral filter. For all networks, 725 2D images (i.e., 29 MRI cases) were used in training; while, 174 2D images (i.e., 6 cases) were used in testing. Results: The SegNet with CRFI achieved the relatively high Dice coefficients (0.76, 0.84, and 0.89) for the peripheral zone, central zone, and whole gland, respectively. Compared with UNet, the SegNet+CRFIs segmentation has generally higher Dice score and showed the robustness in determining the boundaries of anatomical structures compared with the SegNet or UNet segmentation. The SegNet with a CRFI at the end showed the CRFI can correct the segmentation errors from SegNet output, generating smooth and consistent segmentation for the prostate. Conclusion: UNet based deep neural networks demonstrated in this study can perform zonal prostate segmentation, achieving high Dice coefficients compared with those in the literature. The proposed CRFI method can reduce the fuzzy boundaries that affected the segmentation performance of baseline UNet and SegNet models.



قيم البحث

اقرأ أيضاً

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the Central Gland (CG) and Peripheral Zone (PZ) can guide towards differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on Deep Learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability of Convolutional Neural Networks (CNNs) on two multi-centric MRI prostate datasets. Especially, we compared three CNN-based architectures: SegNet, U-Net, and pix2pix. In such a context, the segmentation performances achieved with/without pre-training were compared in 4-fold cross-validation. In general, U-Net outperforms the other methods, especially when training and testing are performed on multiple datasets.
The neuroimage analysis community has neglected the automated segmentation of the olfactory bulb (OB) despite its crucial role in olfactory function. The lack of an automatic processing method for the OB can be explained by its challenging properties . Nonetheless, recent advances in MRI acquisition techniques and resolution have allowed raters to generate more reliable manual annotations. Furthermore, the high accuracy of deep learning methods for solving semantic segmentation problems provides us with an option to reliably assess even small structures. In this work, we introduce a novel, fast, and fully automated deep learning pipeline to accurately segment OB tissue on sub-millimeter T2-weighted (T2w) whole-brain MR images. To this end, we designed a three-stage pipeline: (1) Localization of a region containing both OBs using FastSurferCNN, (2) Segmentation of OB tissue within the localized region through four independent AttFastSurferCNN - a novel deep learning architecture with a self-attention mechanism to improve modeling of contextual information, and (3) Ensemble of the predicted label maps. The OB pipeline exhibits high performance in terms of boundary delineation, OB localization, and volume estimation across a wide range of ages in 203 participants of the Rhineland Study. Moreover, it also generalizes to scans of an independent dataset never encountered during training, the Human Connectome Project (HCP), with different acquisition parameters and demographics, evaluated in 30 cases at the native 0.7mm HCP resolution, and the default 0.8mm pipeline resolution. We extensively validated our pipeline not only with respect to segmentation accuracy but also to known OB volume effects, where it can sensitively replicate age effects.
Data augmentation refers to a group of techniques whose goal is to battle limited amount of available data to improve model generalization and push sample distribution toward the true distribution. While different augmentation strategies and their co mbinations have been investigated for various computer vision tasks in the context of deep learning, a specific work in the domain of medical imaging is rare and to the best of our knowledge, there has been no dedicated work on exploring the effects of various augmentation methods on the performance of deep learning models in prostate cancer detection. In this work, we have statically applied five most frequently used augmentation techniques (random rotation, horizontal flip, vertical flip, random crop, and translation) to prostate Diffusion-weighted Magnetic Resonance Imaging training dataset of 217 patients separately and evaluated the effect of each method on the accuracy of prostate cancer detection. The augmentation algorithms were applied independently to each data channel and a shallow as well as a deep Convolutional Neural Network (CNN) were trained on the five augmented sets separately. We used Area Under Receiver Operating Characteristic (ROC) curve (AUC) to evaluate the performance of the trained CNNs on a separate test set of 95 patients, using a validation set of 102 patients for finetuning. The shallow network outperformed the deep network with the best 2D slice-based AUC of 0.85 obtained by the rotation method.
The integrity of articular cartilage is a crucial aspect in the early diagnosis of osteoarthritis (OA). Many novel MRI techniques have the potential to assess compositional changes of the cartilage extracellular matrix. Among these techniques, diffus ion tensor imaging (DTI) of cartilage provides a simultaneous assessment of the two principal components of the solid matrix: collagen structure and proteoglycan concentration. DTI, as for any other compositional MRI technique, require a human expert to perform segmentation manually. The manual segmentation is error-prone and time-consuming ($sim$ few hours per subject). We use an ensemble of modified U-Nets to automate this segmentation task. We benchmark our model against a human expert test-retest segmentation and conclude that our model is superior for Patellar and Tibial cartilage using dice score as the comparison metric. In the end, we do a perturbation analysis to understand the sensitivity of our model to the different components of our input. We also provide confidence maps for the predictions so that radiologists can tweak the model predictions as required. The model has been deployed in practice. In conclusion, cartilage segmentation on DW-MRI images with modified U-Nets achieves accuracy that outperforms the human segmenter. Code is available at https://github.com/aakashrkaku/knee-cartilage-segmentation
Automatic segmentation of vestibular schwannoma (VS) tumors from magnetic resonance imaging (MRI) would facilitate efficient and accurate volume measurement to guide patient management and improve clinical workflow. The accuracy and robustness is cha llenged by low contrast, small target region and low through-plane resolution. We introduce a 2.5D convolutional neural network (CNN) able to exploit the different in-plane and through-plane resolutions encountered in standard of care imaging protocols. We use an attention module to enable the CNN to focus on the small target and propose a supervision on the learning of attention maps for more accurate segmentation. Additionally, we propose a hardness-weighted Dice loss function that gives higher weights to harder voxels to boost the training of CNNs. Experiments with ablation studies on the VS tumor segmentation task show that: 1) the proposed 2.5D CNN outperforms its 2D and 3D counterparts, 2) our supervised attention mechanism outperforms unsupervised attention, 3) the voxel-level hardness-weighted Dice loss can improve the performance of CNNs. Our method achieved an average Dice score and ASSD of 0.87 and 0.43~mm respectively. This will facilitate patient management decisions in clinical practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا