ﻻ يوجد ملخص باللغة العربية
We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially-dependent chemical and thermal state, producing synthetic emission data cubes and maps of both HI and the molecular gas tracers CO, NH3 and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated to the region where gas flowing towards the Galactic Center through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.
We present a study of the gas cycle and star formation history in the central 500 pc of the Milky Way, known as Central Molecular Zone (CMZ). Through hydrodynamical simulations of the inner 4.5 kpc of our Galaxy, we follow the gas cycle in a complete
We use hydrodynamical simulations to study the Milky Ways central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation and supernova feedback. We resolve the structure of the interstel
The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations res
The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc i
Observations of molecular gas near the Galactic centre ($| l | < 10^circ$, $| b | < 1^circ$) reveal the presence of a distinct population of enigmatic compact clouds which are characterised by extreme velocity dispersions ($Delta v > 100, rm km/s$).