ﻻ يوجد ملخص باللغة العربية
We report new measurements of millimeter-wave power spectra in the angular multipole range $2000 le ell le 11,000$ (angular scales $5^prime gtrsim theta gtrsim 1^prime$). By adding 95 and 150,GHz data from the low-noise 500 deg$^2$ SPTpol survey to the SPT-SZ three-frequency 2540 deg$^2$ survey, we substantially reduce the uncertainties in these bands. These power spectra include contributions from the primary cosmic microwave background, cosmic infrared background, radio galaxies, and thermal and kinematic Sunyaev-Zeldovich (SZ) effects. The data favor a thermal SZ (tSZ) power at 143,GHz of $D^{rm tSZ}_{3000} = 3.42 pm 0.54~ mu {rm K}^2$ and a kinematic SZ (kSZ) power of $D^{rm kSZ}_{3000} = 3.0 pm 1.0~ mu {rm K}^2$. This is the first measurement of kSZ power at $ge 3,sigma$. We study the implications of the measured kSZ power for the epoch of reionization, finding the duration of reionization to be $Delta z_{re} = 1.0^{+1.6}_{-0.7}$ ($Delta z_{re}< 4.1$ at 95% confidence), when combined with our previously published tSZ bispectrum measurement.
We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 sq.deg. SPT-SZ survey area. Data in the th
We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological paramete
We explore extensions to the $Lambda$CDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of $H_0$ and BAO. We check for consistency within $Lambda$CDM be
The cosmic microwave background (CMB) contains perturbations that are close to Gaussian and isotropic. This means that its information content, in the sense of the ability to constrain cosmological models, is closely related to the number of modes pr
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (