ﻻ يوجد ملخص باللغة العربية
We investigate the radiative processes of accelerated entangled two-level systems. Using first-order perturbation theory, we evaluate transition rates of two entangled Unruh-DeWitt detectors rotating with the same angular velocity interacting with a massive scalar field. Decay processes for arbitrary radius, angular velocities, and energy gaps are analyzed. We discuss the mean-life of entangled states and entanglement harvesting and degradation.
We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling i
We investigate radiative processes of inertial two-level atoms in an entangled state interacting with a quantum electromagnetic field. Our intention is to clarify and to analyze the contributions of vacuum fluctuations and radiation reaction to the d
Semiclassical chiral kinetic theories in the presence of electromagnetic fields as well as vorticity can be constructed by means of some different relativistic or nonrelativistic approaches. To cover the noninertial features of rotating frames one ca
We establish covariant semiclassical transport equations of massive spin-1/2 particles which are generated by the quantum kinetic equation modified by enthalpy current dependent terms. The purpose of modification is to take into account the noninerti
We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which