ترغب بنشر مسار تعليمي؟ اضغط هنا

Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets

337   0   0.0 ( 0 )
 نشر من قبل Dongxian Wu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Skip connections are an essential component of current state-of-the-art deep neural networks (DNNs) such as ResNet, WideResNet, DenseNet, and ResNeXt. Despite their huge success in building deeper and more powerful DNNs, we identify a surprising security weakness of skip connections in this paper. Use of skip connections allows easier generation of highly transferable adversarial examples. Specifically, in ResNet-like (with skip connections) neural networks, gradients can backpropagate through either skip connections or residual modules. We find that using more gradients from the skip connections rather than the residual modules according to a decay factor, allows one to craft adversarial examples with high transferability. Our method is termed Skip Gradient Method(SGM). We conduct comprehensive transfer attacks against state-of-the-art DNNs including ResNets, DenseNets, Inceptions, Inception-ResNet, Squeeze-and-Excitation Network (SENet) and robustly trained DNNs. We show that employing SGM on the gradient flow can greatly improve the transferability of crafted attacks in almost all cases. Furthermore, SGM can be easily combined with existing black-box attack techniques, and obtain high improvements over state-of-the-art transferability methods. Our findings not only motivate new research into the architectural vulnerability of DNNs, but also open up further challenges for the design of secure DNN architectures.



قيم البحث

اقرأ أيضاً

248 - Yiwen Guo , Qizhang Li , Hao Chen 2020
The vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community. In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs. We revis it a not so new but definitely noteworthy hypothesis of Goodfellow et al.s and disclose that the transferability can be enhanced by improving the linearity of DNNs in an appropriate manner. We introduce linear backpropagation (LinBP), a method that performs backpropagation in a more linear fashion using off-the-shelf attacks that exploit gradients. More specifically, it calculates forward as normal but backpropagates loss as if some nonlinear activations are not encountered in the forward pass. Experimental results demonstrate that this simple yet effective method obviously outperforms current state-of-the-arts in crafting transferable adversarial examples on CIFAR-10 and ImageNet, leading to more effective attacks on a variety of DNNs.
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, emph{i.e.}, adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they maintain their effectiveness even against other models. With great efforts delved into the transferability of adversarial examples, surprisingly, less attention has been paid to its impact on real-world deep learning deployment. In this paper, we investigate the transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, explicit content detection, optical character recognition (OCR), and object detection. It represents the cybercriminals situation where an ensemble of different detection mechanisms need to be evaded all at once. We propose practical attack that overcomes existing attacks limitation of requiring task-specific loss functions by targeting on the `dispersion of internal feature map. We report evaluation on four different computer vision tasks provided by Google Cloud Vision APIs to show how our approach outperforms existing attacks by degrading performance of multiple CV tasks by a large margin with only modest perturbations.
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they remain adversarial even against other models. Although great efforts have been delved into the transferabilit y across models, surprisingly, less attention has been paid to the cross-task transferability, which represents the real-world cybercriminals situation, where an ensemble of different defense/detection mechanisms need to be evaded all at once. In this paper, we investigate the transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, object detection, semantic segmentation, explicit content detection, and text detection. Our proposed attack minimizes the ``dispersion of the internal feature map, which overcomes existing attacks limitation of requiring task-specific loss functions and/or probing a target model. We conduct evaluation on open source detection and segmentation models as well as four different computer vision tasks provided by Google Cloud Vision (GCV) APIs, to show how our approach outperforms existing attacks by degrading performance of multiple CV tasks by a large margin with only modest perturbations linf=16.
Skip connection, is a widely-used technique to improve the performance and the convergence of deep neural networks, which is believed to relieve the difficulty in optimization due to non-linearity by propagating a linear component through the neural network layers. However, from another point of view, it can also be seen as a modulating mechanism between the input and the output, with the input scaled by a pre-defined value one. In this work, we investigate how the scale factors in the effectiveness of the skip connection and reveal that a trivial adjustment of the scale will lead to spurious gradient exploding or vanishing in line with the deepness of the models, which could be addressed by normalization, in particular, layer normalization, which induces consistent improvements over the plain skip connection. Inspired by the findings, we further propose to adaptively adjust the scale of the input by recursively applying skip connection with layer normalization, which promotes the performance substantially and generalizes well across diverse tasks including both machine translation and image classification datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا