ﻻ يوجد ملخص باللغة العربية
We show that finite lattices with arbitrary boundaries may support large degenerate subspaces, stemming from the underlying translational symmetry of the lattice. When the lattice is coupled to an environment, a potentially large number of these states remains weakly or perfectly uncoupled from the environment, realising a new kind of bound states in the continuum. These states are strongly localized along particular directions of the lattice which, in the limit of strong coupling to the environment, leads to spatially-localized subradiant states.
We present a distinct mechanism for the formation of bound states in the continuum (BICs). In chiral quantum systems there appear zero-energy states in which the wave function has finite amplitude only in one of the subsystems defined by the chiral s
Robust edge transport can occur when particles in crystalline lattices interact with an external magnetic field. This system is well described by Blochs theorem, with the spectrum being composed of bands of bulk states and in-gap edge states. When th
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
We study theoretically the radiative lifetime of bound two-particle excitations in a waveguide with an array of two-level atoms, realising a 1D Dicke-like model. Recently, Zhang et al. [arXiv:1908.01818] have numerically found an unexpected sharp max
We study the interplay between disorder and topology for the localized edge states of light in topological zigzag arrays of resonant dielectric nanoparticles. We characterize topological properties by the winding number that depends on both zigzag an