ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Lorentz Invariation Violation on Arbitrarily Spin Fermions Tunneling Radiation in the Vaidya-Bonner Spacetime

232   0   0.0 ( 0 )
 نشر من قبل Jie Zhang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the spacetime of non-stationary spherical symmetry Vaidya-Bonner black hole, an accurate modification of Hawking tunneling radiation for fermions with arbitrarily spin is researched. Considering a light dispersion relationship derived from string theory, quantum gravitational theory and Rarita-Schwinger Equation in the non-stationary spherical symmetry spacetime, we derive an accurately modified dynamic equation for fermions with arbitrarily spin. By solving the equation, modified tunneling rate of fermions with arbitrarily spin, Hawking temperature and entropy at the event horizon of Vaidya-Bonner black hole are presented. We find the Hawking temperature will increase, but the the entropy will decrease comparing with the case without Lorentz Invariation Violation modification.



قيم البحث

اقرأ أيضاً

104 - Shu-Zheng Yang , Kai Lin , Jin Li 2014
Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black strings is researched under this correctional Dirac field theory. We also use semi-classical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black holes entropy are derived.
We study holographic subregion volume complexity for a line segment in the AdS$_3$ Vaidya geometry. On the field theory side, this gravity background corresponds to a sudden quench which leads to the thermalization of the strongly-coupled dual confor mal field theory. We find the time-dependent extremal volume surface by numerically solving a partial differential equation with boundary condition given by the Hubeny-Rangamani-Takayanagi surface, and we use this solution to compute holographic subregion complexity as a function of time. Approximate analytical expressions valid at early and at late times are derived.
We present a kind of generalized Vaidya solutions in a generic Lovelock gravity. This solution generalizes the simple case in Gauss-Bonnet gravity reported recently by some authors. We study the thermodynamics of apparent horizon in this generalized Vaidya spacetime. Treating those terms except for the Einstein tensor as an effective energy-momentum tensor in the gravitational field equations, and using the unified first law in Einstein gravity theory, we obtain an entropy expression for the apparent horizon. We also obtain an energy expression of this spacetime, which coincides with the generalized Misner-Sharp energy proposed by Maeda and Nozawa in Lovelock gravity.
The impact of Lorentz violation on the dynamics of a scalar field is investigated. In particular, we study the dynamics of a scalar field in the scalar-vector-tensor theory where the vector field is constrained to be unity and time like. By taking a generic form of the scalar field action, a generalized dynamical equation for the scalar-vector-tensor theory of gravity is obtained to describe the cosmological solutions. We present a class of exact solutions for an ordinary scalar field or phantom field corresponding to a power law coupling vector and the Hubble parameter. As the results, we find a constant equation of state in de Sitter space-time and power law expansion with the quadratic of coupling vector, while a dynamic equation of state is obtained for $n> 2$. Then, we consider the inflationary scenario based on the Lorentz violating scalar-vector-tensor theory of gravity with general power-law coupling vector and two typical potentials: inverse power-law and power-law potentials. In fact, both the coupling vector and the potential models affect the dynamics of the inflationary solutions. Finally, we use the dynamical system formalism to study the attractor behavior of a cosmological model containing a scalar field endowed with a quadratic coupling vector and a chaotic potential.
67 - M. Schreck 2019
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w hereas the second one does. A r{e}sum{e} will be given of the decay rates for these processes and their properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا