ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Design in Two-Sided Platforms: An Analysis of Bias

67   0   0.0 ( 0 )
 نشر من قبل Hannah Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an analytical framework to study experimental design in two-sided marketplaces. Many of these experiments exhibit interference, where an intervention applied to one market participant influences the behavior of another participant. This interference leads to biased estimates of the treatment effect of the intervention. We develop a stochastic market model and associated mean field limit to capture dynamics in such experiments, and use our model to investigate how the performance of different designs and estimators is affected by marketplace interference effects. Platforms typically use two common experimental designs: demand-side (customer) randomization (CR) and supply-side (listing) randomization (LR), along with their associated estimators. We show that good experimental design depends on market balance: in highly demand-constrained markets, CR is unbiased, while LR is biased; conversely, in highly supply-constrained markets, LR is unbiased, while CR is biased. We also introduce and study a novel experimental design based on two-sided randomization (TSR) where both customers and listings are randomized to treatment and control. We show that appropriate choices of TSR designs can be unbiased in both extremes of market balance, while yielding relatively low bias in intermediate regimes of market balance.



قيم البحث

اقرأ أيضاً

Two-sided marketplace platforms often run experiments to test the effect of an intervention before launching it platform-wide. A typical approach is to randomize individuals into the treatment group, which receives the intervention, and the control g roup, which does not. The platform then compares the performance in the two groups to estimate the effect if the intervention were launched to everyone. We focus on two common experiment types, where the platform randomizes individuals either on the supply side or on the demand side. The resulting estimates of the treatment effect in these experiments are typically biased: because individuals in the market compete with each other, individuals in the treatment group affect those in the control group and vice versa, creating interference. We develop a simple tractable market model to study bias and variance in these experiments with interference. We focus on two choices available to the platform: (1) Which side of the platform should it randomize on (supply or demand)? (2) What proportion of individuals should be allocated to treatment? We find that both choices affect the bias and variance of the resulting estimators but in different ways. The bias-optimal choice of experiment type depends on the relative amounts of supply and demand in the market, and we discuss how a platform can use market data to select the experiment type. Importantly, we find in many circumstances, choosing the bias-optimal experiment type has little effect on variance. On the other hand, the choice of treatment proportion can induce a bias-variance tradeoff, where the bias-minimizing proportion increases variance. We discuss how a platform can navigate this tradeoff and best choose the treatment proportion, using a combination of modeling as well as contextual knowledge about the market, the risk of the intervention, and reasonable effect sizes of the intervention.
Data can be collected in scientific studies via a controlled experiment or passive observation. Big data is often collected in a passive way, e.g. from social media. In studies of causation great efforts are made to guard against bias and hidden conf ounders or feedback which can destroy the identification of causation by corrupting or omitting counterfactuals (controls). Various solutions of these problems are discussed, including randomization.
We investigate the problem of fair recommendation in the context of two-sided online platforms, comprising customers on one side and producers on the other. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reveals that such customer-centric design may lead to unfair distribution of exposure among the producers, which may adversely impact their well-being. On the other hand, a producer-centric design might become unfair to the customers. Thus, we consider fairness issues that span both customers and producers. Our approach involves a novel mapping of the fair recommendation problem to a constrained version of the problem of fairly allocating indivisible goods. Our proposed FairRec algorithm guarantees at least Maximin Share (MMS) of exposure for most of the producers and Envy-Free up to One item (EF1) fairness for every customer. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in the overall recommendation quality.
We present the Stata commands probitfe and logitfe, which estimate probit and logit panel data models with individual and/or time unobserved effects. Fixed effect panel data methods that estimate the unobserved effects can be severely biased because of the incidental parameter problem (Neyman and Scott, 1948). We tackle this problem by using the analytical and jackknife bias corrections derived in Fernandez-Val and Weidner (2016) for panels where the two dimensions ($N$ and $T$) are moderately large. We illustrate the commands with an empirical application to international trade and a Monte Carlo simulation calibrated to this application.
Major online platforms today can be thought of as two-sided markets with producers and customers of goods and services. There have been concerns that over-emphasis on customer satisfaction by the platforms may affect the well-being of the producers. To counter such issues, few recent works have attempted to incorporate fairness for the producers. However, these studies have overlooked an important issue in such platforms -- to supposedly improve customer utility, the underlying algorithms are frequently updated, causing abrupt changes in the exposure of producers. In this work, we focus on the fairness issues arising out of such frequent updates, and argue for incremental updates of the platform algorithms so that the producers have enough time to adjust (both logistically and mentally) to the change. However, naive incremental updates may become unfair to the customers. Thus focusing on recommendations deployed on two-sided platforms, we formulate an ILP based online optimization to deploy changes incrementally in n steps, where we can ensure smooth transition of the exposure of items while guaranteeing a minimum utility for every customer. Evaluations over multiple real world datasets show that our proposed mechanism for platform updates can be efficient and fair to both the producers and the customers in two-sided platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا