ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating ${rm N00N}$-states of surface plasmon-polariton pairs with a nanoparticle

73   0   0.0 ( 0 )
 نشر من قبل Nikita Olekhno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a generation of two-particle quantum states in the process of spontaneous parametric down-conversion of light by a dielectric nanoparticle with $chi^{(2)}$ response. As a particular example, we study the generation of surface plasmon-polariton pairs with a ${rm GaAs}$ nanoparticle located at the silver-air interface. We show that for certain excitation geometries, ${rm N00N}$-states of surface plasmon-polariton pairs could be obtained. The effect can be physically interpreted as a result of quantum interference between pairs of induced sources, each emitting either signal or idler plasmon. We then relate the resulting ${rm N00N}$-pattern to the general symmetry properties of dyadic Greens function of a dipole emitter exciting surface waves. It renders the considered effect as a general way towards a robust generation of ${rm N00N}$-states of surface waves using spontaneous parametric down-conversion in $chi^{(2)}$ nanoparticles.



قيم البحث

اقرأ أيضاً

We consider the electromagnetic field near an interface between two media with arbitrary real frequency-dependent permittivities and permeabilities, under conditions supporting the surface plasmon-polariton (SPP) propagation. The dispersion of the el ectric and magnetic properties is taken into account based on the recent approach for description of the spin and momentum of electromagnetic field in complex media [Phys. Rev. Lett. 119, 073901 (2017); New J. Phys., 19, 123014 (2017)]. It involves the Minkowski momentum decomposition into the spin and orbital parts with the dispersion-modified permittivities and permeabilities. Explicit expressions are derived for spatial densities of the energy, energy flow, spin and orbital momenta and angular momenta of the transverse-magnetic (TM) SPP field. They are free from non-physical singularities; the only singular contribution describes a strictly localized surface part of the spin momentum that can be associated with the magnetization current in the conductive part of the SPP-supporting structure. On this ground, a phenomenological theory of the SPP-induced magnetization (predicted earlier based on the simplified microscopic approach) is outlined. Possible modifications and generalizations, including the transverse-electric (TE) SPP waves, are discussed.
We present a simplified yet sophisticated variation to localised surface plasmon resonance spectroscopy, which makes use of naked or non-functionalised, nanoparticle templates. These nanoparticle templates, produced with a rapid and scalable process, namely laser annealing, were used as a highly sensitive surface sensor to monitor the adsorption of both metallic lead and a lead salt from aqueous solutions, showing a measurable optical response due to a surface abundance of lead as low as 100 ppm from 0.3 ml of Pb2SO4 solutions, with concentrations less than 20 ppm. This proposed method enables the end user to rapidly assess the surface abundance of lead from a simple optical reflectance measurement and could serve as a platform for in situ analysis within water filtration and cleaning systems.
We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between th e incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerical calculations. The forces acting on larger particles are analyzed numerically, beyond the dipole approximation.
Recently, guiding electromagnetic surface waves without sacrificing scattering losses through paths that have arbitrary shape bumps has gained a lot of interest due to its wealth of advantages in modern photonics and plasmonics devices. In this study , based on transformation optics (TO) methodology, a feasible approach to control the flow of surface plasmon plariton (SPPs) at metal-dielectric interfaces with arbitrary curvature is proposed. The obtained material becomes homogeneous and independent of the bumps geometry. That is, one constant material is required to route SPP waves without scattering the energy into the far-field region, which overcome the bottlenecks encountered in the previous works. Several numerical simulations are carried out to illustrate the capability of the propounded cloak to control the SPP flows at metal/dielectric interfaces. The unique designing approach introduced here may open a new horizon to nano-optics and downscaling of photonic circuits.
Crystals of plasmonic metal nanoparticles have intriguing optical properties. They reach the regimes of ultrastrong and deep strong light-matter coupling, where the photonic states need to be included in the simulation of material properties. We prop ose a quantum description of the plasmon polaritons in supercrystals that starts from the dipole and quadrupole excitations of the nanoparticle building blocks and their coupling to photons. Our model excellently reproduces results of finite difference time domain simulations. It provides detailed insight into the emergence of the polariton states. Using the example of a face centered cubic crystals we show that the dipole and quadrupole states mix in many high symmetry directions of the Brilouin zone. A proper description of the plasmon and plasmon-polariton band structure is only possible when including the quadrupole-derived states. Our model leads to an expression of the reduced coupling strength in nanoparticle supercrystals that we show to enter the deep strong coupling regime for metal fill fractions above $0.8$. In addition to the plasmon-polariton energies we analyse the relative contributions of the dipole, quadrupole, and photonic states to their eigenfunctions and are able to demonstrate the decoupling of light in the deep strong coupling regime. Our results pave the way for a better understanding of the quantum properties of metallic nanoparticle supercrystals in the ultrastrong and deep-strong coupling regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا