ﻻ يوجد ملخص باللغة العربية
We work under the A{i}d{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate nonnegative random variable that we denote by $Z$. It is shown that $mathbb{E} Zmathbf{1}_{{Zle x}}=log x+o(log x)$ as $xtoinfty$. Also, we provide necessary and sufficient conditions under which $mathbb{E} Zmathbf{1}_{{Zle x}}=log x+{rm const}+o(1)$ as $xtoinfty$. This more precise asymptotics is a key tool for proving distributional limit theorems which quantify the rate of convergence of the derivative martingale to its limit $Z$. The methodological novelty of the present paper is a three terms representation of a subharmonic function of at most linear growth for a killed centered random walk of finite variance. This yields the aforementioned asymptotics and should also be applicable to other models.
A continuous-time particle system on the real line verifying the branching property and an exponential integrability condition is called a branching Levy process, and its law is characterized by a triplet $(sigma^2,a,Lambda)$. We obtain a necessary a
In this paper, we reveal the branching structure for a non-homogeneous random walk with bounded jumps. The ladder time $T_1,$ the first hitting time of $[1,infty)$ by the walk starting from $0,$ could be expressed in terms of a non-homogeneous multit
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope $gamma-epsilon$, where $gamma$ denotes the
Using a high performance computer cluster, we run simulations regarding an open problem about d-dimensional critical branching random walks in a random IID environment The environment is given by the rule that at every site independently, with probab
The stochastic solutions to the Wigner equation, which explain the nonlocal oscillatory integral operator $Theta_V$ with an anti-symmetric kernel as {the generator of two branches of jump processes}, are analyzed. All existing branching random walk s