ترغب بنشر مسار تعليمي؟ اضغط هنا

One hundred SMUDGes in S-PLUS: ultra-diffuse galaxies flourish in the field

78   0   0.0 ( 0 )
 نشر من قبل Carlos Eduardo Barbosa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first systematic study of the stellar populations of ultra-diffuse galaxies (UDGs) in the field, integrating the large area search and characterization of UDGs by the SMUDGes survey with the twelve-band optical photometry of the S-PLUS survey. Based on Bayesian modeling of the optical colors of UDGs, we determine the ages, metallicities and stellar masses of 100 UDGs distributed in an area of $sim 330$ deg$^2$ in the Stripe 82 region. We find that the stellar masses and metallicities of field UDGs are similar to those observed in clusters and follow the trends previously defined in studies of dwarf and giant galaxies. However, field UDGs have younger luminosity-weighted ages than do UDGs in clusters. We interpret this result to mean that field UDGs have more extended star formation histories, including some that continue to form stars at low levels to the present time. Finally, we examine stellar population scaling relations that show that UDGs are, as a population, similar to other low-surface brightness galaxies.



قيم البحث

اقرأ أيضاً

We present 226 large ultra-diffuse galaxy (UDG) candidates ($r_e > 5.3$arcsec, $mu_{0,g} > 24$ mag arcsec$^{-2}$) in the SDSS Stripe 82 region recovered using our improved procedure developed in anticipation of processing the entire Legacy Surveys fo otprint. The advancements include less constrained structural parameter fitting, expanded wavelet filtering criteria, consideration of Galactic dust, estimates of parameter uncertainties and completeness based on simulated sources, and refinements of our automated candidate classification. We have a sensitivity $sim$1 mag fainter in $mu_{0,g}$ than the largest published catalog of this region. Using our completeness-corrected sample, we find that (1) there is no significant decline in the number of UDG candidates as a function of $mu_{0,g}$ to the limit of our survey ($sim$ 26.5 mag arcsec$^{-2}$); (2) bluer candidates have smaller Sersic $n$; (3) most blue ($g-r < 0.45$ mag) candidates have $mu_{0,g} lesssim 25$ mag arcsec$^{-2}$ and will fade to populate the UDG red sequence we observe to $sim 26.5$ mag arcsec$^{-2}$; (4) any red UDGs that exist significantly below our $mu_{0,g}$ sensitivity limit are not descended from blue UDGs in our sample; and (5) candidates with lower $mu_{0,g}$ tend to smaller $n$. We anticipate that the final SMUDGes sample will contain $sim$ 30$times$ as many candidates.
We present a homogeneous catalog of 275 large (effective radius $gtrsim$ 5.3 arcsec) ultra-diffuse galaxy (UDG) candidates lying within an $approx$ 290 square degree region surrounding the Coma cluster. The catalog results from our automated postproc essing of data from the Legacy Surveys, a three-band imaging survey covering 14,000 square degrees of the extragalactic sky. We describe a pipeline that identifies UDGs and provides their basic parameters. The survey is as complete in these large UDGs as previously published UDG surveys of the central region of the Coma cluster. We conclude that the majority of our detections are at roughly the distance of the Coma cluster, implying effective radii $ge 2.5$ kpc, and that our sample contains a significant number of analogs of DF 44, where the effective radius exceeds 4 kpc, both within the cluster and in the surrounding field. The $g-z$ color of our UDGs spans a large range, suggesting that even large UDGs may reflect a range of formation histories. A majority of the UDGs are consistent with being lower stellar mass analogs of red sequence galaxies, but we find both red and blue UDG candidates in the vicinity of the Coma cluster and a relative overabundance of blue UDG candidates in the lower density environments and the field. Our eventual processing of the full Legacy Surveys data will produce the largest, most homogeneous sample of large UDGs.
236 - Fangzhou Jiang 2018
We study ultra-diffuse galaxies (UDGs) in zoom in cosmological simulations, seeking the origin of UDGs in the field versus galaxy groups. We find that while field UDGs arise from dwarfs in a characteristic mass range by multiple episodes of supernova feedback (Di Cintio et al. 2017), group UDGs may also form by tidal puffing up and they become quiescent by ram-pressure stripping. The field and group UDGs share similar properties, independent of distance from the group centre. Their dark-matter haloes have ordinary spin parameters and centrally dominant dark-matter cores. Their stellar components tend to have a prolate shape with a Sersic index n~1 but no significant rotation. Ram pressure removes the gas from the group UDGs when they are at pericentre, quenching star formation in them and making them redder. This generates a colour/star-formation-rate gradient with distance from the centre, as observed in clusters. We find that ~20 per cent of the field UDGs that fall into a massive halo survive as satellite UDGs. In addition, normal field dwarfs on highly eccentric orbits can become UDGs near pericentre due to tidal puffing up, contributing about half of the group-UDG population. We interpret our findings using simple toy models, showing that gas stripping is mostly due to ram pressure rather than tides. We estimate that the energy deposited by tides in the bound component of a satellite over one orbit can cause significant puffing up provided that the orbit is sufficiently eccentric.
Ultra-diffuse galaxies (UDGs) are the lowest-surface brightness galaxies known, with typical stellar masses of dwarf galaxies but sizes similar to larger galaxies like the Milky Way. The reason for their extended sizes is debated, with suggested inte rnal processes like angular momentum, feedback or mergers versus external mechanisms or a combination of both. Observationally, we know that UDGs are red and quiescent in groups and clusters while their counterparts in the field are blue and star-forming. This dichotomy suggests environmental effects as main culprit. However, this scenario is challenged by recent observations of isolated quiescent UDGs in the field. Here we use $Lambda$CDM cosmological hydrodynamical simulation to show that isolated quenched UDGs are formed as backsplash galaxies that were once satellites of another galactic, group or cluster halo but are today a few Mpc away from them. These interactions, albeit brief, remove the gas and tidally strip the outskirts of the dark matter haloes of the now quenched seemingly-isolated UDGs, which are born as star-forming field UDGs occupying dwarf-mass dark matter haloes. Quiescent UDGs may therefore be found in non-negligible numbers in filaments and voids, bearing the mark of past interactions as stripped outer haloes devoid of dark matter and gas compared to dwarfs with similar stellar content.
94 - A. Cortesi , K. Saha , F.Ferrari 2021
This work is a Brazilian-Indian collaboration. It aims at investigating the structuralproperties of Lenticular galaxies in the Stripe 82 using a combination of S-PLUS (Southern Photometric Local Universe Survey) and SDSS data. S-PLUS is a noveloptica l multi-wavelength survey which will cover nearly 8000 square degrees of the Southern hemisphere in the next years and the first data release covers the Stripe 82 area. The morphological classification and study of the galaxies stellar population will be performed combining the Bayesian Spectral type (from BPZ) and Morfometryka (MFMTK) parameters. BPZ and MFMTK are two complementary techniques, since the first one determines the most likely stellar population of a galaxy, in order to obtain its photometric redshift (phot-z), and the second one recovers non-parametric morphological quantities, such as asymmetries and concentration. The combination ofthe two methods allows us to explore the correlation between galaxies shapes (smooth, with spiral arms, etc.) and their stellar contents (old or young population). The preliminary results, presented in this work, show how this new data set opens a new window on our understanding of the nearby universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا