ﻻ يوجد ملخص باللغة العربية
Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient, hardware-based solution to this cryptographic problem. Existing solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries, e.g., as present in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, the resulting code - and data - in the enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.
Several cybersecurity domains, such as ransomware detection, forensics and data analysis, require methods to reliably identify encrypted data fragments. Typically, current approaches employ statistics derived from byte-level distribution, such as ent
Fully homomorphic encryption (FHE) enables a simple, attractive framework for secure search. Compared to other secure search systems, no costly setup procedure is necessary; it is sufficient for the client merely to upload the encrypted database to t
Reliable identification of encrypted file fragments is a requirement for several security applications, including ransomware detection, digital forensics, and traffic analysis. A popular approach consists of estimating high entropy as a proxy for ran
In this paper, we propose GraphSE$^2$, an encrypted graph database for online social network services to address massive data breaches. GraphSE$^2$ preserves the functionality of social search, a key enabler for quality social network services, where
Enclaves, such as those enabled by Intel SGX, offer a powerful hardware isolation primitive for application partitioning. To become universally usable on future commodity OSes, enclave designs should offer compatibility with existing software. In thi