The proposed correspondence between the Hawking-Unruh radiation mechanism in rotating, electrically-charged and electrically-charged-rotating black holes and the hadronization in high-energy physics is assumed. This allows us to determine the well-profound freezeout parameters of the heavy-ion collisions. Furthermore, black holes thermodynamics is found analogical to that of the high-energy collisions. We also introduce a relation expressing the dependence of the angular momentum and the angular velocity deduced from rotating black holes on the chemical potential. The novel phase diagram for rotating, electrically-charged and electrically-charged-rotating black holes are found in an excellent agreement with the phase diagrams drawn for electrically-charged black holes and also with the ones mapped out from the statistical thermal models and the high-energy experiments. Moreover, our estimations for the freezeout conditions $langle Erangle/langle Nrangle$ and $s/T^3$ are in excellent good agreement with the ones determined from the hadronization process, especially at $muleq 0.3$ GeV.