ﻻ يوجد ملخص باللغة العربية
Coronal Mass Ejections (CMEs) may have major importance for planetary and stellar evolution. Stellar CME parameters, such as mass and velocity, have yet not been determined statistically. So far only a handful of stellar CMEs has been detected mainly on dMe stars using spectroscopic observations. We therefore aim for a statistical determination of CMEs of solar-like stars by using spectroscopic data from the ESO phase 3 and Polarbase archives. To identify stellar CMEs we use the Doppler signal in optical spectral lines being a signature of erupting filaments which are closely correlated to CMEs. We investigate more than 3700 hours of on-source time of in total 425 dF-dK stars. We find no signatures of CMEs and only few flares. To explain this low level of activity we derive upper limits for the non detections of CMEs and compare those with empirically modelled CME rates. To explain the low number of detected flares we adapt a flare power law derived from EUV data to the H{alpha} regime, yielding more realistic results for H{alpha} observations. In addition we examine the detectability of flares from the stars by extracting Sun-as-a-star H{alpha} light curves. The extrapolated maximum numbers of observable CMEs are below the observationally determined upper limits, which indicates that the on-source times were mostly too short to detect stellar CMEs in H{alpha}. We conclude that these non detections are related to observational biases in conjunction with a low level of activity of the investigated dF-dK stars.
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by
The stellar magnetic field completely dominates the environment around late-type stars. It is responsible for driving the coronal high-energy radiation (e.g. EUV/X-rays), the development of stellar winds, and the generation transient events such as f
Coronal Mass Ejections (CMEs) contributes to the perturbation of solar wind in the heliosphere. Thus, depending on the different phases of the solar cycle and the rate of CME occurrence, contribution of CMEs to solar wind parameters near the Earth ch
Aims: We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs
We propose a new model for the initiation of a solar coronal mass ejection (CME). The model agrees with two properties of CMEs and eruptive flares that have proved to be very difficult to explain with previous models. a) Very low-lying magnetic field