ﻻ يوجد ملخص باللغة العربية
The precise measurement of cosmic-ray antinuclei serves as an important means for identifying the nature of dark matter and other new astrophysical phenomena, and could be used with other cosmic-ray species to understand cosmic-ray production and propagation in the Galaxy. For instance, low-energy antideuterons would provide a smoking gun signature of dark matter annihilation or decay, essentially free of astrophysical background. Studies in recent years have emphasized that models for cosmic-ray antideuterons must be considered together with the abundant cosmic antiprotons and any potential observation of antihelium. Therefore, a second dedicated Antideuteron Workshop was organized at UCLA in March 2019, bringing together a community of theorists and experimentalists to review the status of current observations of cosmic-ray antinuclei, the theoretical work towards understanding these signatures, and the potential of upcoming measurements to illuminate ongoing controversies. This review aims to synthesize this recent work and present implications for the upcoming decade of antinuclei observations and searches. This includes discussion of a possible dark matter signature in the AMS-02 antiproton spectrum, the most recent limits from BESS Polar-II on the cosmic antideuteron flux, and reports of candidate antihelium events by AMS-02; recent collider and cosmic-ray measurements relevant for antinuclei production models; the state of cosmic-ray transport models in light of AMS-02 and Voyager data; and the prospects for upcoming experiments, such as GAPS. This provides a roadmap for progress on cosmic antinuclei signatures of dark matter in the coming years.
The origin of dark matter is a driving question of modern physics. Low-energy antideuterons provide a smoking gun signature of dark matter annihilation or decay, essentially free of astrophysical background. Low-energy antiprotons are a vital partner
Antideuteron and antihelium nuclei have been proposed as promising detection channels for dark matter because of the low astrophysical backgrounds expected. To estimate both potential exotic contributions and their backgrounds, one usually employs th
Neutrino astronomy has entered an exciting time with the completion of the first km3-scale neutrino telescope at the South Pole (IceCube) and the successful operation of the first under-sea neutrino telescope in the Mediterranean (Antares). This new
Numerical solutions of the cosmic-ray (CR) magneto-hydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding arti
The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above $sim$ 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactio