ترغب بنشر مسار تعليمي؟ اضغط هنا

A decade of multi-wavelength observations of the TeV blazar 1ES 1215+303: Extreme shift of the synchrotron peak frequency and long-term optical-gamma-ray flux increase

79   0   0.0 ( 0 )
 نشر من قبل Janeth Valverde
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are known for their variability on a wide range of timescales at all wavelengths. Most studies of TeV gamma-ray blazars focus on short timescales, especially during flares. With a decade of observations from the Fermi-LAT and VERITAS, we present an extensive study of the long-term multi-wavelength radio-to-gamma-ray flux-density variability, with the addition of a couple of short-time radio-structure and optical polarization observations of the blazar 1ES 1215+303 (z=0.130), with a focus on its gamma-ray emission from 100 MeV to 30 TeV. Multiple strong GeV gamma-ray flares, a long-term increase in the gamma-ray and optical flux baseline and a linear correlation between these two bands are observed over the ten-year period. Typical HBL behaviors are identified in the radio morphology and broadband spectrum of the source. Three stationary features in the innermost jet are resolved by VLBA at 43.1, 22.2, and 15.3 GHz. We employ a two-component synchrotron self-Compton model to describe different flux states of the source, including the epoch during which an extreme shift in energy of the synchrotron peak frequency from infrared to soft X-rays is observed.



قيم البحث

اقرأ أيضاً

We carried out a detailed study of the temporal and broadband spectral behaviour of one of the brightest misaligned active galaxies in gamma-rays, NGC 1275 utilising 11 years of Fermi, and available Swift and AstroSat observations. Based on the cumul ative flux distribution of the gamma-ray lightcurve, we identified four distinct activity states and noticed an increase in the baseline flux during the first three states. Similar nature of the increase in the average flux was also noticed in X-ray and UV bands. A large flaring activity in gamma-rays was noticed in the fourth state. The source was observed twice by AstroSat for shorter intervals (~days) during the longer observing periods (~years) state 3 and 4. During AstroSat observing periods, the source gamma-ray flux was higher than the average flux observed during longer duration states. The increase in the average baseline flux from state 1 to state 3 can be explained considering a corresponding increase of jet particle normalisation. The inverse Comptonisation of synchrotron photons explained the average X-ray and gamma-ray emission by jet electrons during the first three longer duration states. However, during the shorter duration AstroSat observing periods, a shift of the synchrotron peak frequency was noticed, and the synchrotron emission of jet electrons well explained the observed X-ray flux.
Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We s tudy the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significance of 9.4 sigma. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV gamma-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.
A detailed analysis of the optical polarimetric variability of the TeV blazar 1ES 1959+650 from 2007 October 18 to 2011 May 5 is presented. The source showed a maximum and minimum brightness states in the R-band of 14.08$pm$0.03 mag and 15.20$pm$0.03 mag, respectively, with a maximum variation of 1.12 mag, and also a maximum polarization degree of $P=$(12.2$pm$0.7)%, with a maximum variation of 10.7%. From August to November 2009, a correlation between the optical $R$-band flux and the degree of linear polarization was found, with a correlation coefficient $r_{pol}$=0.984$pm$0.025. The source presented a preferential position angle of optical polarization of $sim153^{circ}$, with variations of $10degr$-$50degr$, that is in agreement with the projected position angle of the parsec scale jet found at 43 GHz. From the Stokes parameters we infer the existence of two optically-thin synchrotron components that contribute to the polarized flux. One of them is stable, with a constant polarization degree of 4%. Assuming a stationary shock for the variable component, we estimated some parameters associated with the physics of the relativistic jet: the magnetic field, $Bsim$0.06 G, the Doppler factor, $delta_{0}sim$23, the viewing angle, $Phisim2.4degr$, and the size of the emission region $r_bsim5.6times10^{17}$ cm. Our study is consistent with the spine-sheath model to explain the polarimetric variability displayed by this source during our monitoring.
A hotspot at a position compatible with the BL Lac object 1ES 2322-409 was serendipitously detected with H.E.S.S. during observations performed in 2004 and 2006 on the blazar PKS 2316-423. Additional data on 1ES 2322-409 were taken in 2011 and 2012, leading to a total live-time of 22.3h. Point-like very-high-energy (VHE; E>100GeV) $gamma$-ray emission is detected from a source centred on the 1ES 2322-409 position, with an excess of 116.7 events at a significance of 6.0$sigma$. The average VHE $gamma$-ray spectrum is well described with a power law with a photon index $Gamma=3.40pm0.66_{text{stat}}pm0.20_{text{sys}}$ and an integral flux $Phi(E>200GeV) = (3.11pm0.71_{rm stat}pm0.62_{rm sys})times10^{-12} cm^{-2} s^{-1}$, which corresponds to 1.1$%$ of the Crab nebula flux above 200 GeV. Multi-wavelength data obtained with Fermi LAT, Swift XRT and UVOT, RXTE PCA, ATOM, and additional data from WISE, GROND and Catalina, are also used to characterise the broad-band non-thermal emission of 1ES 2322-409. The multi-wavelength behaviour indicates day-scale variability. Swift UVOT and XRT data show strong variability at longer scales. A spectral energy distribution (SED) is built from contemporaneous observations obtained around a high state identified in Swift data. A modelling of the SED is performed with a stationary homogeneous one-zone synchrotron-self-Compton (SSC) leptonic model. The redshift of the source being unknown, two plausible values were tested for the modelling. A systematic scan of the model parameters space is performed, resulting in a well-constrained combination of values providing a good description of the broad-band behaviour of 1ES 2322-409.
The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا