ﻻ يوجد ملخص باللغة العربية
Weyl points are robust point degeneracies in the band structure of a periodic material, which act as monopoles of Berry curvature. They have been at the forefront of research in three-dimensional topological materials (whether photonic, electronic or otherwise) as they are associated with novel behavior both in the bulk and on the surface. Here, we present the experimental observation of a charge-2 photonic Weyl point in a low-index-contrast photonic crystal fabricated by two-photon polymerization. The reflection spectrum obtained via Fourier Transform Infrared (FTIR) spectroscopy closely matches simulations and shows two bands with quadratic dispersion around a point degeneracy. This work provides a launching point towards all-dielectric, low-contrast three-dimensional photonic topological devices.
Weyl points are point degeneracies that occur in momentum space of periodic materials, and are associated with a quantized topological charge. We experimentally observe in a 3D micro-printed photonic crystal that a charge-2 Weyl point can be split in
Quite recently a novel variety of unconventional fourfold linear band degeneracy points has been discovered in certain condensed-matter systems. Contrary to the standard 3-D Dirac monopoles, these quadruple points referred to as the charge-2 Dirac po
Weyl fermions are hypothetical two-component massless relativistic particles in three-dimensional (3D) space, proposed by Hermann Weyl in 1929. Their band-crossing points, called Weyl points, carry a topological charge and are therefore highly robust
Weyl semimetals are gapless three-dimensional (3D) phases whose bandstructures contain Weyl point (WP) degeneracies. WPs carry topological charge and can only be eliminated by mutual annihilation, a process that generates the various topologically di
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom